

Type 2 Liverpool

Ringing Simulator
06 – Technical Reference Guide

Author: Andrew Instone-Cowie

Date: 09 July 2025

Version: 1.8

Type 2 Simulator – Technical Reference Guide 1.8

2

Contents
Index of Figures ... 5

Index of Tables .. 7

Document History ... 8

Licence .. 9

Attribution... 9

Documentation Map ... 10

About This Guide ... 11

Typical Type 2 Simulator Installations .. 12

Basic Configuration ... 12

Second PC Module .. 13

Basic Serial Splitter Module .. 14

Simulator Overview .. 15

Bell Sensing Methods .. 15

Sensor Types ... 15

Single vs Dual Trigger .. 16

Dual Triggers ... 16

Single Trigger ... 17

Simulator Interface Module Hardware ... 19

Overview ... 19

Hardware Options ... 19

Hardware Interrupts ... 19

Microcontroller Hardware .. 20

Serial Line Driver ... 20

Microcontroller Configuration .. 21

Microcontroller I/O Pins ... 21

Microcontroller Fuse Settings ... 22

Power Supply .. 23

Typical Current Requirements .. 23

Microcontroller Package Ratings .. 23

Voltage Regulator ... 23

Cable Voltage Drop ... 23

Heat Dissipation .. 24

Hardware Compatibility .. 25

Basic Serial Splitter Module Hardware ... 26

Overview ... 26

Type 2 Simulator – Technical Reference Guide 1.8

3

Serial Line Drivers.. 26

PCB Design .. 26

Power Supply .. 26

Downstream Data ... 27

Fan-Out Calculation .. 28

Upstream Data .. 29

Transmitter Disabling .. 30

Circuit Protection .. 32

Over-Current Protection ... 32

Polarity Protection .. 32

Transient Voltage Suppression ... 33

Uni-Directional TVS Diodes ... 34

Bi-Directional TVS Diodes.. 36

Leakage Current Issues ... 37

Connector Pin-Outs ... 39

Multiple Device Conventions .. 39

Sensor Module Connector .. 40

Simulator Interface Module Sensor Connector .. 41

Simulator Interface Module Power/Data Connector.. 42

Power Module Power/Data Connector .. 43

Second PC Module Connector .. 44

Basic Serial Splitter Module Connector .. 45

DB9 Serial Connectors ... 46

DTEs & DCEs .. 46

Power Module ... 47

Second PC Module .. 47

Basic Serial Splitter Module .. 48

Simulator Interface Module Firmware ... 49

Sensor Characteristics ... 49

Firmware Design ... 50

Interrupt Driven vs Polling .. 50

State Machine Operation .. 51

Timer Issues .. 53

Sensor De-Bouncing .. 53

Debugging & Timing Features ... 54

Type 2 Simulator – Technical Reference Guide 1.8

4

Serial Input & Command Line Interface .. 56

Sensor Enable/Disable .. 57

Memory Footprint... 57

Metrics .. 58

Inter-Blow Interval Requirements .. 58

Inter-Row Interval Requirements ... 59

Sensor Pulse Duration ... 59

Potential Problems .. 61

Missed Sensor Signals ... 61

Duplicated Sensor Signals ... 61

Variable Odd-Struckness ... 62

Latency .. 63

Software Development & Compatibility ... 66

Development Environment ... 66

Source Code Availability .. 66

Simulator Software Compatibility ... 66

USB-to-Serial Adapters ... 67

Driver Installation .. 68

Driver Verification ... 70

COM Port Reconfiguration .. 73

Interconnecting Type 1 & Type 2 Simulators .. 77

Compatibility ... 77

Type 1 – Type 2 Interface Adapter .. 77

Schematic .. 79

Interface Adapter PCB ... 80

Parts List .. 81

Interface Adapter Cabling ... 81

Type 1 Interface Wiring Modification ... 82

Appendices .. 83

Appendix A: MBI Protocol Description ... 83

Appendix B: MBI Protocol Commands .. 84

Appendix C: Metrics Tables ... 85

Inter-Blow & Inter-Row Interval ... 85

Sensor Pulse Duration ... 86

BDC-to-Strike Intervals .. 87

Type 2 Simulator – Technical Reference Guide 1.8

5

Appendix D: CLI Command Reference .. 88

Appendix E: Diagnostic LED Codes .. 90

Appendix F: Useful Links ... 91

Appendix G: A Quarter Peal of Cambridge Surprise Minor .. 92

Licensing & Disclaimers ... 93

Documentation ... 93

Software .. 93

Acknowledgements ... 94

Index of Figures

Figure 1 – Documentation Map .. 10

Figure 2 – Simulator General Arrangement .. 12

Figure 3 – Second PC Module General Arrangement ... 13

Figure 4 – Basic Serial Splitter Modules General Arrangement .. 14

Figure 5 – Dual Triggers – Backstroke Strike Point ... 16

Figure 6 – Dual Triggers – Handstroke Strike Point .. 16

Figure 7 – Single Trigger – Backstroke Strike Point ... 17

Figure 8 – Single Trigger – Handstroke Strike Point .. 17

Figure 9 – Basic Serial Splitter Downstream Data Flow .. 27

Figure 10 – Basic Serial Splitter Upstream Data Flow ... 29

Figure 11 – Basic Serial Splitter Transmitter Control .. 30

Figure 12 – Polarity Protection – Correct ... 32

Figure 13 – Polarity Protection – Reversed... 33

Figure 14 – TVS Diode Characteristic Curves .. 34

Figure 15 – Uni-Directional TVS Diode .. 35

Figure 16 – Spike Dissipation (Uni-Directional) .. 35

Figure 17 – Bi-Directional TVS Diode .. 36

Figure 18 – Spike Dissipation (Bi-Directional) ... 37

Figure 19 – Leakage Current "Voltage Divider" Effect .. 38

Figure 20 – Leakage Current – Supplementary Pull-Up Resistor .. 38

Figure 21 – Sensor Module Connector ... 40

Figure 22 – Sensor Chain Inter-Connection .. 40

Type 2 Simulator – Technical Reference Guide 1.8

6

Figure 23 – Simulator Interface Module Sensor Connector ... 41

Figure 24 – Simulator Interface 4-Gang Connector .. 41

Figure 25 – Simulator Interface Module Power/Data Connector ... 42

Figure 26 – Power Module Power/Data Connector ... 43

Figure 27 – Second PC Module Connector ... 44

Figure 28 – Basic Serial Splitter Connector ... 45

Figure 29 – Power Module DB9 Serial Connector... 47

Figure 30 – Second PC Module DB9 Serial Connector .. 47

Figure 31 – Basic Serial Splitter DB9 Serial Connectors .. 48

Figure 32 – Simulator Interface Main Loop Timing .. 50

Figure 33 – State Machine Transitions Illustration ... 51

Figure 34 – Sensor De-Bounce Illustration.. 53

Figure 35 – Sensor Pulse Duration Illustration ... 60

Figure 36 – Missed Sensor Signals Illustration .. 61

Figure 37 – Duplicated Sensor Signals Illustration .. 62

Figure 38 – Variable Odd-Struckness Illustration ... 63

Figure 39 – Simulator Interface Latency ... 64

Figure 40 – Logic Analyser Decode ... 65

Figure 41 – Example of a USB-to-Serial Adapter ... 67

Figure 42 – Prolific Driver Installation ... 68

Figure 43 – Driver Installation Complete .. 69

Figure 44 – Found New Hardware Message ... 69

Figure 45 – My Computer Context Menu (Windows XP) .. 70

Figure 46 – Computer Context Menu (Windows 7) .. 70

Figure 47 – System Properties Hardware Tab (Windows XP) ... 71

Figure 48 – System Properties Hardware Tab (Windows 7) ... 71

Figure 49 – Device Manager (Driver Installed) ... 72

Figure 50 – Device Manager (Driver Missing) ... 72

Figure 51 – Device Manager (Port COM14) .. 73

Figure 52 – Device Manager Context Menu ... 74

Figure 53 – COM Port Properties .. 74

Figure 54 – COM Port Advanced Settings (Prolific) .. 75

Type 2 Simulator – Technical Reference Guide 1.8

7

Figure 55 – COM Port Advanced Settings (FTDI) .. 75

Figure 56 – Device Manager (Reconfigured Port COM3).. 76

Figure 57 - Type 1 - Type 2 Adapter .. 77

Figure 58 - Type 1 - Type 2 Adapter Board Layout ... 80

Figure 59 - Type 1 - Type 2 Adapter PCB ... 80

Figure 60 - Type 1 - Type 2 Adapter Cable .. 81

Figure 61 - Type 1 Interface Connector Wiring Modification ... 82

Figure 62 – Liverpool Cathedral Odd-Struckness Chart .. 87

Figure 63 – Quarter Peal Sensor Head Test Timings ... 92

Index of Tables

Table 1 – Microcontroller I/O Pin Assignments .. 21

Table 2 – ATmega328P Fuse Settings – Board Rev A to D .. 22

Table 3 – ATmega328P Fuse Settings – Board Rev E onwards ... 22

Table 4 – TVS Diode Key Properties .. 33

Table 5 – Type 1 – Type 2 Interface Adapter Requirements .. 78

Table 6 – Type 1 – Type 2 Interface Adapter Parts List ... 81

Table 7 – MBI Protocol Commands... 84

Table 8 – Inter-Blow & Inter-Row Intervals .. 85

Table 9 – Sensor Pulse Durations – Liverpool Cathedral .. 86

Table 10 – Theoretical Sensor Pulse Durations – Other Towers ... 86

Table 11 – CLI Command Reference ... 88

Table 12 – LED Signal Codes .. 90

Table 13 – Useful Links .. 91

Type 2 Simulator – Technical Reference Guide 1.8

8

Document History

Version Author Date Changes

0.1 A J Instone-Cowie 26/12/2019 First Draft.

1.0 A J Instone-Cowie 28/12/2019 First Release.

1.1 A J Instone-Cowie 02/01/2020 Add Basic Serial Splitter hardware details, more

cabling information, logic analyser trace.

1.2 A J Instone-Cowie 18/08/2020 Minor update.

1.3 A J Instone-Cowie 27/08/2021 Add Circuit Protection, DB9 pin-outs, minor

corrections.

1.4 A J Instone-Cowie 19/06/2024 Update for interface firmware 3.7, MBI Protocol

0xFD command support in Abel 10.3.2, update

software versions.

Update external links.

1.5 A J Instone-Cowie 03/03/2025 Add Type 1 – Type 2 Interface Adapter.

1.6 A J Instone-Cowie 07/05/2025 Eagle to KiCad PCB design tool migration. Updated

schematics and board layouts.

1.7 A J Instone-Cowie 09/05/2025 Restyled MR sensors as “Magnetic Sensors” for

consistency with Build & Installation Guide.

1.8 A J Instone-Cowie 07/07/2025 Debugging options changes for Firmware 3.8.

Copyright ©2019-25 Andrew Instone-Cowie.

Cover image: Type 2 Simulator Interface PCB Design.

Type 2 Simulator – Technical Reference Guide 1.8

9

Licence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.1

Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers

the Licensed Material as-is and as-available, and makes no representations or warranties of any kind

concerning the Licensed Material, whether express, implied, statutory, or other. This includes,

without limitation, warranties of title, merchantability, fitness for a particular purpose, non-

infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in

part, this disclaimer may not apply to You.

To the extent possible, in no event will the Licensor be liable to You on any legal theory (including,

without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential,

punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or

use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses,

costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this

limitation may not apply to You.

Attribution
The Creative Commons Attribution-ShareAlike (CC BY-SA) licence permits you to re-use this material

for any purpose you wish, subject to the conditions of the licence, including providing attribution of

the source.

The following is suggested as a suitable form of attribution for this document, or extracts thereof:

Type 2 Technical Reference Guide, Liverpool Ringing Simulator Project

(https://www.simulators.org.uk). This document is licensed under the CC BY-SA 4.0 licence

(https://creativecommons.org/licenses/by-sa/4.0/). © 2019-2025 Andrew J Instone-Cowie.

1 https://creativecommons.org/licenses/by-sa/4.0/

https://www.simulators.org.uk/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Type 2 Simulator – Technical Reference Guide 1.8

10

Documentation Map

Figure 1 – Documentation Map

Type 2 Simulator – Technical Reference Guide 1.8

11

About This Guide
The Type 2 Liverpool Ringing Simulator allows sensors, attached to one or more real tower bells or

teaching dumb bells, to be connected to a computer Simulator Software Package such as Abel2,

Beltower3 or Virtual Belfry4. This allows you to extend and augment the teaching and practice

opportunities in your tower.

This Technical Reference Guide contains background information on the design of the simulator

hardware and firmware, and other reference material which may be useful.

Configuration guides for the main Simulator Software Packages are available separately, as are the

detailed Build & Installation Guide and Multi-PC Guide.

Please note that this is a Build-it-Yourself project. No pre-built hardware is available.

2 https://www.abelsim.co.uk/
3 https://www.beltower.co.uk/
4 https://www.belfryware.com/

https://www.abelsim.co.uk/doc/welcome1.htm
https://www.beltower.co.uk/
https://www.belfryware.com/

Type 2 Simulator – Technical Reference Guide 1.8

12

Typical Type 2 Simulator Installations

Basic Configuration
The following diagram illustrates the general arrangement of a simulator installation using a sensor

aggregation hardware interface like the Liverpool Ringing Simulator.

Multiple Sensor Modules in the belfry, one per bell, are connected to a Simulator Interface Module.

A single data cable transmits the aggregated signals from the Simulator Interface Module to the

Simulator PC in the ringing room. The same cable feeds power from a low voltage power supply in

the ringing room, via a Power Module, back up to the Simulator Interface to power both Interface

and Sensor Modules. The Type 2 simulator supports up to 16 sensors (only 12 shown on the diagram

to save space).

In the ringing room, a PC runs a Simulator Software Package which interprets the received signals

and turns them into the simulated sound of bells.

Figure 2 – Simulator General Arrangement

Type 2 Simulator – Technical Reference Guide 1.8

13

Second PC Module
As an option, multiple Simulator PCs may be used concurrently, using either a Second PC Module, or

the Basic Serial Splitter Module.

A second Simulator PC can be connected via a Second PC Module. This module utilises the second

transmitter in the Simulator Interface MAX233 RS-232 serial line driver IC, and a spare core in the

Power/Data cable, to provide a separate data feed to the Second PC.

A typical configuration with a Second PC Module is illustrated in the following diagram (only a subset

of sensors are shown to save space):

Figure 3 – Second PC Module General Arrangement

Type 2 Simulator – Technical Reference Guide 1.8

14

Basic Serial Splitter Module
The Basic Serial Splitter Module uses additional RS-232 receiver and line driver ICs to copy the

stream of signals from the Simulator Interface to multiple PCs. The minimum configuration of the

Basic Serial Splitter (the “Master Board”) supports up to four PCs, but this can be linked to a second

“Expander Board” which supports four more PCs.

Two Basic Serial Splitter Modules can be daisy-chained between the Power Module and the

Simulator Interface Module on RJ45 cables, supporting a maximum of 16 Simulator PCs. The

maximum configuration of two daisy-chained Basic Serial Splitters is illustrated in the following

diagram (all sensors are omitted to save space):

Figure 4 – Basic Serial Splitter Modules General Arrangement

All Simulator PCs receive a read-only copy of the same signals from the Simulator Interface. Each PC

runs its own copy of the Simulator Software Package (or even of different software packages), and

the Simulator Software on each PC is configured to filter out unwanted signals.

Any one PC connected to the Basic Serial Splitter can be used to send configuration data to the

Simulator Interface, selectable by a switch on the splitter. (If two Basic Serial Splitters are daisy-

chained together, only PCs connected to the Splitter nearest to the Power module can be used to

configure the Interface.)

Type 2 Simulator – Technical Reference Guide 1.8

15

Simulator Overview

Bell Sensing Methods

Sensor Types

Over the years a number of different approaches have been used for detecting the position of a tied

or dumb bell, and translating that position into a signal for use by a simulator.

• Mechanical switches or contacts suffer from reliability problems, including mechanical

fatigue and environmental damage (e.g. corrosion or ingress of dirt), and are not now widely

used. Mechanical switches also typically suffer from a high degree of contact “bounce”.

• Electro-Magnetic sensors, typically consisting of a glass-encapsulated reed switch attached

to the bell frame and a small magnet attached to the wheel shroud, have also been used,

but typically require very close alignment of switch and magnet. They can also suffer from

fatigue and contact bounce.

• Inductive sensors, which have a fixed detector circuit attached to the bell frame, and a wire

coil fitted to the wheel shroud, have also been used. In principle the absence of moving

parts should make these a very reliable option. However, a key component of the original

design5 is no longer available, and parts for an alternative design6 are described as difficult

to obtain.

• Aidan Hedley has produced a sensor design7 using a Honeywell magneto-resistive sensor,

activated by a small, powerful rare earth magnet mounted on the wheel shroud. Alan Griffin

and Derek Livsey produced a similar design using an Allegro Microsystems Hall Effect device.

The standard magnetic sensor used by the Type 2 Liverpool Ringing Simulator is derived

from these designs.

• A wireless, accelerometer-based sensor has been developed and prototyped as the Belfree

simulator. This sensor is mounted on the wheel of the bell and communicates with the

Simulator PC via a radio link. At the time of writing these not currently available8.

• Optical sensor heads using visible light typically consist of a light source, usually a fixed red

Light Emitting Diode (LED), mounted parallel to a photo-diode or photo-transistor detector,

in an enclosure attached to the bell frame; and a reflector mounted on the wheel shroud.

Visible light optical sensors are widely used, are very reliable, and this is the approach

adopted by the Bagley MBI sensor heads9. Their use can be problematic in areas with high

ambient light levels. Other designs include additional pulse-shaping or timing circuitry10.

• Optical sensor heads using infra-red light are similar in general design, but have reduced

susceptibility to ambient visible light levels. A sensor design using a low cost commercially

available modulating infra-red detector has been developed as an alternative sensor for the

Type 2 Simulator.

5 https://www.abelsim.co.uk/doc/tbellex2.htm
6 http://www.gremlyn.plus.com/ahme/prox_sen.html
7 http://www.gremlyn.plus.com/ahme/mag_sen.html
8 The Belfree website is no longer active.
9 http://www.bagleybells.co.uk/sensors/sensors.htm
10 https://www.abelsim.co.uk/doc/tbellex1.htm

https://www.abelsim.co.uk/doc/tbellex2.htm
http://www.gremlyn.plus.com/ahme/prox_sen.html
http://www.gremlyn.plus.com/ahme/mag_sen.html
http://www.bagleybells.co.uk/sensors/sensors.htm
https://www.abelsim.co.uk/doc/tbellex1.htm

Type 2 Simulator – Technical Reference Guide 1.8

16

Single vs Dual Trigger
There are generally two approaches used by simulators when detecting signals from sensors:

• The dual trigger approach uses two triggers (for example, optical reflectors) on the shroud of

the wheel of each bell, one of which triggers at the moment that the bell would strike at

handstroke, the other at the moment that the bell would strike at backstroke.

• The single trigger approach uses one trigger, which triggers as the bell passes through the

bottom dead centre (BDC) of its swing. A delay is then applied (either in the Simulator

Interface or the Simulator Software Package) before the simulator triggers the simulated

sound of the bell.

The Liverpool Ringing Simulator project adopts the single trigger approach, on the grounds of

simplicity of installation and compatibility with other similar systems. This is discussed in more detail

in a later section of this guide.

Dual Triggers

The dual trigger approach uses two triggers (for example, optical reflectors or magnets) on the

shroud of the wheel of each bell, one of which triggers at the moment that the bell would strike at

handstroke, the other at the moment that the bell would strike at backstroke. The simulator triggers

the simulated sound of the bell as soon as the signal pulse is received (from the trigger travelling

past the sensor as the bell is on its way up to the balance), and then ignores the next signal pulse (as

the first trigger travels back past the sensor as the bell is on its way down), and so on.

This approach is illustrated in the following diagrams. In Figure 5 the bell is rising towards the

handstroke position, and is passing through the backstroke strike point. The backstroke trigger

passes the sensor and generates a signal to the Simulator. Figure 6 shows the opposite stroke as the

bell rises towards the backstroke position and passes through the handstroke strike point.

Figure 5 – Dual Triggers – Backstroke Strike Point

Figure 6 – Dual Triggers – Handstroke Strike Point

Type 2 Simulator – Technical Reference Guide 1.8

17

The sensor is shown at the BDC position only for clarity. The sensor may be located anywhere

around the wheel, provided that the geometrical relationship between the sensor and the two

triggers is maintained.

This approach has the capacity to provide a very accurate representation of the striking of a bell, but

equally requires very accurate placement of the triggers to match the strike points of the bell in

motion. This may be difficult and time-consuming to determine.

Single Trigger

The single trigger approach uses one trigger, which triggers as the bell passes through the bottom

dead centre (BDC) of its swing. A delay is then applied (either in the Simulator Interface or the

Simulator Software Package) before the simulator triggers the simulated sound of the bell.

This approach is illustrated in the following diagrams. In Figure 7 the bell is rising towards the

handstroke position. The trigger passed the sensor at BDC, and a delay is applied so that the signal to

the Simulator is generated later, as the bell passes through the backstroke strike point. Figure 8

shows the opposite stroke as the bell rises towards the backstroke position and passes through the

handstroke strike point.

Figure 7 – Single Trigger – Backstroke Strike Point

Figure 8 – Single Trigger – Handstroke Strike Point

The sensor is again shown at BDC only for clarity. The sensor may be located anywhere around the

wheel, provided that the geometrical relationship between the sensor and the trigger is maintained,

the trigger being positioned directly opposite the sensor when the bell is down.

This approach is simpler to implement, and the single trigger is much easier to align accurately

against the Sensor Head with the bell down. Work by John Norris11 has shown that this approach can

provide an acceptable degree of accuracy, with any errors considered too small to be detectable to

the human ear.

11 https://www.jrnorris.co.uk/strike.html

https://www.jrnorris.co.uk/strike.html

Type 2 Simulator – Technical Reference Guide 1.8

18

The Type 2 Liverpool Ringing Simulator adopts the single trigger approach, on the grounds of

simplicity of installation, and compatibility with other similar systems.

Type 2 Simulator – Technical Reference Guide 1.8

19

Simulator Interface Module Hardware

Overview
The Simulator Interface Module hardware consists of three main functional blocks:

• A 5V regulated power supply, which provides power for the interface electronics and for the

sensor.

• A digital microcontroller, which detects incoming signals from the sensors, and then sends

aggregated signals to the Simulator PC in the form of a stream of ASCII characters.

• A RS-232 serial line driver, which converts the TTL-level signals from the microcontroller to

higher voltage RS-232 signals, for transmission over longer distances to the Simulator PC.

All the components of these functional blocks are mounted on a single custom PCB. The same core

hardware (and firmware) can connect to any number of Sensors Modules from one to 16.

Hardware Options
Over recent years several low-cost electronic prototyping platforms have been brought to the

market, with a number of different architectures, and suitable for a wide range of experimental and

embedded functions. These include single board computers running feature-rich operating systems,

such as the Raspberry Pi and Beagle Board, and simpler microcontroller-based products such as the

Arduino family, PICAXE, ARM Cortex and others.

New devices and variants are released frequently.

The Arduino Uno development platform (based on the Microchip (formerly Atmel) ATmega328P

microcontroller12) was originally selected as the prototyping platform for the Liverpool Cathedral

Simulator project, on the grounds of:

• Simplicity & low cost

• Established user base & wide community support

• Wide availability of additional prototyping peripheral hardware (“shields”)

The use of the same microcontroller family has been continued for the Type 2 Liverpool Ringing

Simulator, allowing the same well-supported and freely available tool chain to be used for code

development and deployment.

Hardware Interrupts
The choice of the ATmega328P imposes an important constraint on the firmware design for the

Simulator Interface, in that the microcontroller has limited support for hardware interrupt inputs.

This is described in more detail in a later section of this guide.

12 https://www.microchip.com/wwwproducts/en/atmega328p

https://www.microchip.com/wwwproducts/en/atmega328p

Type 2 Simulator – Technical Reference Guide 1.8

20

Microcontroller Hardware
The Simulator Interface is based on the same Microchip (formerly Atmel) ATmega328P

microcontroller as the Arduino Uno used in the first prototype interfaces. Using the same

microcontroller makes it very easy to port the Simulator Interface firmware to the new hardware.

• The Simulator Interface13 makes use of an external 8MHz resonator as a clock source.

Although this is less accurate than a crystal oscillator, it is still adequate for the purposes of

the Simulator Interface, and this reduces the overall component count and complexity of the

interface board by omitting crystal load capacitors.

• Although the Simulator Interface uses the ATmega328P microcontroller and development

tool chain, it does not use the Arduino boot loader program. The ATmega328P is

programmed via an ICSP header using a programmer (the Arduino-as-ISP method is

suggested and is described in more detail in the Build & Installation Guide.)

Serial Line Driver

• The Simulator Interface uses the Analog Devices (formerly Maxim) MAX233 RS-232 serial

line driver14. The MAX233 has the advantage over other line driver ICs of requiring no

external charge pump capacitors, also reducing the overall component count. It also

provides two RS-232 transmitters, simplifying support for multiple Simulator PCs.

13 From Rev E onwards.
14 https://www.analog.com/en/products/max233.html

https://www.analog.com/en/products/max233.html

Type 2 Simulator – Technical Reference Guide 1.8

21

Microcontroller Configuration

Microcontroller I/O Pins

The following table shows the ATmega328P pin assignments for the Type 2 Simulator Interface:

Table 1 – Microcontroller I/O Pin Assignments

Arduino I/O Pin15 ATmega328P

Physical Pin

Function

0 2 Serial Port Receive

1 3 Serial Port Transmit

2 4 Sensor #12 (T)

3 5 Sensor #10 (0)

4 6 Diagnostic LED

5 11 CRO Timing Pin (enabled in development code only)

6 12 Sensor #1

7 13 Sensor #2

8 14 Sensor #3

9 15 Sensor #4

10 16 Sensor #5

11 17 Sensor #6

12 18 Sensor #7

13 19 Sensor #8

14 (A0) 23 Sensor #9

15 (A1) 24 Sensor #11 (E)

16 (A2) 25 Sensor #13 (A)

17 (A3) 26 Sensor #14 (B)

18 (A4) 27 Sensor #15 (C)

19 (A5) 28 Sensor #16 (D)

15 Pin numbers as referenced in the Arduino programming environment.

Type 2 Simulator – Technical Reference Guide 1.8

22

Microcontroller Fuse Settings

The ATmega328P microcontroller has several configuration registers known as fuses. These are used

to control the behaviour of the microcontroller16. Fuse values are contained in the file boards.txt

described in the section on uploading firmware below, and are only written during the burn

bootloader phase of programming.

Warning: Setting incorrect fuse values can render the microcontroller unusable or prevent further

reprogramming without specialist hardware.

The appropriate set of fuses is selected in the Arduino IDE by selecting the correct board type in the

Liverpool Ringing Simulator Boards set.

Table 2 – ATmega328P Fuse Settings – Board Rev A to D

 Fuse Value Notes

Low 0xE2 8MHz internal oscillator, maximum clock startup delay.

(SUT0, CKSEL3, CKSEL2, CKSEL0)

High 0XDF Enable serial programming, boot reset vector disabled. (SPIEN)

Extended 0xFD Brown-out detection level 1 (2.7V). (BODLEVEL1)

For more details of these fuse settings and their functions, refer to the ATmega328P data sheet, or

see the online fuse calculator at:

https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=E2&HIGH=DF&EXTENDED

=FD.

Table 3 – ATmega328P Fuse Settings – Board Rev E onwards

 Fuse Value Notes

Low 0xCF 8MHz external resonator, maximum clock startup delay. (SUT0, SUT1)

High 0XDF Enable serial programming, boot reset vector disabled. (SPIEN)

Extended 0xFD Brown-out detection level 1 (2.7V). (BODLEVEL1)

For more details of these fuse settings and their functions, refer to the ATmega328P data sheet, or

see the online fuse calculator at:

https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=CF&HIGH=DF&EXTENDED

=FD.

Note that unlike the Type 1 Simulator Interface, EEPROM contents are cleared on firmware load

(high fuse bit 3, EESAVE, is not set, giving 0xDF instead of 0xD7). This is to be confident of having a

workable default configuration even if the interface has not yet been configured by the user.

16 Fuse tutorial: https://www.martyncurrey.com/arduino-atmega-328p-fuse-settings/

https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=E2&HIGH=DF&EXTENDED=FD
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=E2&HIGH=DF&EXTENDED=FD
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=CF&HIGH=DF&EXTENDED=FD
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=CF&HIGH=DF&EXTENDED=FD
https://www.martyncurrey.com/arduino-atmega-328p-fuse-settings/

Type 2 Simulator – Technical Reference Guide 1.8

23

Power Supply
DC power is supplied to the Simulator Interface over the Power/Data Cable at a higher voltage than

required, to overcome the effects of losses due to the resistance of the Power/Data Cable. Incoming

power is fed to a conventional linear 5V regulator on the Simulator Interface PCB. An alternative to a

conventional linear regulator is described in the Build & Installation Guide, for installations with

higher current requirements.

Typical Current Requirements

The Simulator Interface Module and Sensor Modules all operate at 5V DC.

• The Simulator Interface current consumption is approximately 25mA.

• The current consumption of the standard Magnetic Sensor Modules is approximately 8mA

per module in the triggered state (i.e. with the LED lit).

• The current consumption of the Infra-Red Sensor Modules is approximately 25mA per

module in the triggered state.

• The total current requirement with a full set of 16 Magnetic Sensor Modules is therefore

approximately 153mA.

• The total current requirement with a full set of 16 Infra-Red Sensor Modules is

approximately 425mA.

These values are well below the 1A maximum current rating of the specified 5V voltage regulator,

however heatsinking may be required for configurations with many Infra-Red Sensor Modules, as

noted below.

Microcontroller Package Ratings

The ATmega328P microcontroller has a source/sink current limit of 40mA per pin, and a total device

package current limit of 200mA. The majority of the microcontroller pins will be connected to sensor

inputs, and these were measured to sink approximately 130 μA each when triggered, so neither of

the microcontroller limits should present a problem. Other pins drive the diagnostic LED and the RS-

232 line driver, and in total these do not draw more than a few milliamps.

Voltage Regulator

The Simulator Interface uses a standard linear voltage regulator to provide a regulated 5V DC supply.

The voltage regulator requires at least 7V DC at its input pin in order to maintain a stable 5V DC

output. The voltage regulator is fed via a polarity protection diode, which drops approximately 0.7V,

giving a minimum input voltage requirement of 7.7V at the Simulator Interface input.

Cable Voltage Drop

CAT5 Ethernet cable is specified17 as having a DC loop resistance of <0.188 Ω/m.

The effective resistance of the power cores of a 25m cable (considering that the simulator

configuration doubles up both power and ground cores) is therefore estimated to be approximately

2.35Ω. At a peak supply current of 425mA, this would result in a voltage drop of approximately 1V

along the 25m cable.

17 https://www.macinstallations.com/cat-5-cabling-explained/

https://www.macinstallations.com/cat-5-cabling-explained/

Type 2 Simulator – Technical Reference Guide 1.8

24

Taking into account the voltage drop across the polarity protection diode, the theoretical minimum

supply voltage to the cable is approximately 8.7V in order for the voltage regulator to maintain a

stable 5V DC output. In practice a multi-voltage DC plug-in power supply unit rated at 1000mA with

the output set to 9V has been found adequate for a cable run up to 25m.

For exceptionally long cable runs a 12V DC supply could be used, but there is no advantage to doing

so for shorter runs, and the heat dissipation of the voltage regulator will increase, with a

requirement for additional heatsinking.

Heat Dissipation

At peak load, with a full complement of 16 Infra-Red Sensor Modules, the voltage regulator would

be dissipating a minimum18 of approximately 0.85W. The power dissipation will be higher with

shorter cable runs or a higher supply voltage. The data sheet for the voltage regulator indicates that

this will require a heatsink.

An alternative approach, described in the Build & Installation Guide, is to replace the linear voltage

regulator with a switched buck regulator. These are available as drop-in replacements for the

standard TO-220 regulator package and eliminate the need for a heatsink altogether.

18 Assuming the minimum required input voltage of 7V at the voltage regulator.

Type 2 Simulator – Technical Reference Guide 1.8

25

Hardware Compatibility
The Type 2 Liverpool Ringing Simulator has been designed to be compatible, as far as possible, with

existing simulator hardware, to allow operation with unmodified Simulator Software Packages which

support the MBI protocol. This is described in more detail in later section of this guide. The

following hardware design decisions have been made to maximise compatibility and interoperability:

• The Simulator Data Connection uses a RS-232 data link to the Simulator, running at 2400

bps, 8 data bits, 1 stop bit, no parity.

• The sensor inputs of the Simulator Interface operate at 5V DC TTL levels. Under normal (un-

triggered) conditions the interface expects that the Sensor Head output pin will be HIGH

(nominally +5V), and that when triggered the Sensor Head output pin will drop LOW

(nominally 0V) for the duration of the trigger pulse19.

Unlike the Type 1 design, the simplified cabling used by the Type 2 Simulator Interface means that

the sensor inputs do not use the same 4-pin GX16-4 panel mount connectors as the Bagley MBI.

Integrating existing sensors into the Type 2 Simulator may be achieved using the Generic Sensor

module described in the Build & Installation Guide.

19 Sensors which operate with reverse logic (normally LOW, going HIGH when triggered) may be
accommodated by amending the firmware to look for LOW to HIGH transitions.

Type 2 Simulator – Technical Reference Guide 1.8

26

Basic Serial Splitter Module Hardware

Overview
The Basic Serial Splitter Module replicates data sent from the Simulator Interface Module

(“downstream data”) to up to 8 Simulator PCs. All PCs receive copies of the same data,

simultaneously. For example, typically this allows more than one ringer with headphones to use the

simulator with a simulated band at the same time, the Simulator Software Package on each ringer’s

PC responding only to the Sensor on “their” tower bell.

The Basic Serial Splitter Module also allows any one Simulator PC to send data to the Simulator

Interface Module (“upstream data”) for configuration purposes. The active Simulator PC is selected

using a DIP switch on the Basic Serial Splitter Module.

Finally, it is possible to daisy-chain two Basic Serial Splitters to allow the connection of up to 16

Simulator PCs. When two Basic Serial Splitters are daisy-chained together, only PCs on the more

downstream Splitter Module can be used to send configuration data to the Simulator Interface

Module.

The Basic Serial Splitter Module is a passive device and has no microcontroller or firmware.

Serial Line Drivers
The Basic Serial Splitter uses two different Serial Line Driver ICs. Data to and from the upstream

Simulator Interface Module is handled by an Analog Devices (formerly Maxim) MAX3323, and data

to and from the Simulator PCs is handled by an Analog Devices (formerly Maxim) MAX208.

• The MAX3323 has been selected to handle the interface data because it can disable its

transmitter and receiver in response to additional control pins (only the ability to disable the

transmitter is used in the Basic Serial Splitter Module), and because its receiver has the

capacity to fan out to multiple transmitters (calculation below).

• The MAX208 consists of 4 pairs of RS-232 transmitters and receivers in a single package. It

can therefore handle signals to and from up to 4 PCs per IC. Note that no RS-232 control

lines are connected. A second MAX208 on the expander board supports a further 4 PCs.

PCB Design
The Basic Serial Splitter Module has been designed such that a common PCB can be assembled

either as a Master Board with connections to the Simulator Interface Module, Power Module, and

up to 4 PCs; or as an Expander Board, which connects to the Master Board and up 4 further PCs.

The Expander Board requires only a subset of the components normally fitted to a Master Board.

This is detailed in the assembly instructions in the Multi-PC Guide.

Power Supply
The Basic Serial Splitter derives its power from the Power Module, using the power lines looped

through on the RJ45 connectors. Although the Basic Serial Splitter current requirements are very

low, a large TO-220 voltage regulator is used to handle the additional heat dissipation if the

installation requires a 12V supply instead of the usual 9V.

Type 2 Simulator – Technical Reference Guide 1.8

27

Downstream Data
The downstream data flow is illustrated in the following diagram:

Figure 9 – Basic Serial Splitter Downstream Data Flow

Data from the Simulator Interface Module is received at RS-232 line levels by the receiver on the

MAX3323, which inverts and level shifts it to TTL levels. The data is then fanned out to up to 8

MAX208 transmitters, which invert and level shift it back to RS-232 line levels for the connected

Simulator PCs.

Type 2 Simulator – Technical Reference Guide 1.8

28

Fan-Out Calculation

The MAX3323 can operate on supply voltages between 3.0V and 5.5V. In the Basic Serial Splitter

Module design the supply voltage VCC is nominally 5.0V, and the VL logic supply pin is tied to VCC.

The choice of VCC = 5.0V is driven by the MAX208, which requires a supply voltage of 5.0V.

MAX3323 RS-232 receiver output specification:

Output Voltage Low VOL:

• IOUT = 1.6mA, VL > 1.8V, guarantees VOL < 0.4V

• IOUT = 1mA, VL ≤ 1.8V, guarantees VOL < 0.4V

• Hence at VL = VCC = 5.0V, the receiver output can sink up to 1.6mA while maintaining VOL

below 0.4V.

Output Voltage High VOH:

• IOUT = -1mA, VL > 1.8V, guarantees VOH > VL - 0.4V

• IOUT = -500µA, VL ≤ 1.8V, guarantees VOH > VL - 0.4V

• Hence at VL = VCC = 5.0V, the receiver output can source up to 1mA while maintaining VOH

above 4.6V.

MAX208 RS-232 transmitter input specification:

Input Voltage Low:

• Input Logic Threshold Low < 0.8V

• Input internal pull-up resistor = 400kΩ

• Input current therefore approximately 12.5μA per transmitter with transmitter input held

low.

• One MAX3323 receiver will drive 8 x MAX208 transmitters in a fully populated Basic Serial

Splitter Module (master board + expander board).

• 12.5μA x 8 transmitters = 100μA

• 100μA is less than the maximum 1.6mA which the MAX3323E receiver output can sink.

• Hence one MAX3323 RS-232 receiver can maintain VOL < 0.4V, which is less than the 0.8V

MAX208 RS-232 transmitter logic low threshold, while driving the required 8 x MAX208 RS-

232 transmitters.

Input Voltage High:

• Input Logic Threshold High > 2.0V

• The MAX208 transmitter input pull-up resistor ensures logic high even if the input is open

circuit. No external current source is required.

• Hence one MAX3323 RS-232 receiver output can maintain VOH >4.6V, which is greater than

the 2.0V MAX208 RS-232 transmitter logic high threshold, while driving the required 8 x

MAX208 RS-232 transmitters.

Type 2 Simulator – Technical Reference Guide 1.8

29

Upstream Data
The upstream data flow is illustrated in the following diagram:

Figure 10 – Basic Serial Splitter Upstream Data Flow

Data from a Simulator PC is received at RS-232 line levels by a receiver on a MAX208, which inverts

and level shifts it to TTL levels. The data from one PC (Simulator PC #1 in the diagram above) is then

connected via the DIP switch to the MAX3323 transmitter, which inverts and level shifts it back to

RS-232 line levels for the Simulator Interface Module.

Type 2 Simulator – Technical Reference Guide 1.8

30

It is important to note that only one MAX208 receiver should be connected at any time to the

MAX3323 transmitter.

• The MAX208 ensures that the outputs of any receivers not connected to an RS-232 source

are held at logic 1 level (logic 1 is high voltage – approximately VCC – on the TTL side).

• Connecting more than one receiver at the same time will result in an effective short circuit

from VCC to ground during any data transmission from a connected PC, as the other receiver

tries to pull its output low. This may damage the MAX208.

Transmitter Disabling

Two Basic Serial Splitter Modules may be daisy-chained to support a maximum of 16 Simulator PCs.

• Where a single Basic Serial Splitter Module is used, only one Simulator PC can be used to

send configuration data to the Simulator Interface Module. The active PC is selected using

the 8-position DIP switch on the Basic Serial Splitter Module.

• Where two Basic Serial Splitter Modules are daisy-chained together, only one module can be

used to send configuration data to the Simulator Interface Module (the active PC on that

module being selected with the DIP switch, as above).

• Only the RS-232 transmitter on the downstream of the two modules is enabled; the

transmitter on the upstream module is disabled.

• The disabling of the upstream transmitter is automatic and cannot be configured.

The circuit controlling the transmitter disabling function is illustrated in the following diagram:

Figure 11 – Basic Serial Splitter Transmitter Control

Type 2 Simulator – Technical Reference Guide 1.8

31

The transmitter disabling function operates as follows:

• The Basic Serial Splitter Modules uses the MAX3323 RS-232 serial line driver IC, which has

the capability to disable the serial transmitter via a control pin, making the RS-232 level

transmit T1OUT20 pin passive and high impedance21.

• When a single Basic Serial Splitter Module is used, the TXENABLE pin is held high via a 10kΩ

pull-up resistor.

• The TXENABLE pin is also connected to pin 8 of the Power Board connector. This is pin is not

connected on the Power Module, so the TXENABLE pin is still held high. This enables the RS-

232 transmitter.

• Pin 8 on the Interface connector is connected to ground (0V). This pin is not used on the

Simulator Interface Module, so this has no effect.

• When a second Basic Serial Splitter is connected, pin 8 on the Power Board connector of the

upstream module is connected to the Interface connector of the downstream interface. This

has the effect of pulling low the TXENABLE pin of the upstream module’s MAX3323.

• This disables the upstream MAX3323’s RS-232 transmitter and makes the T1OUT transmit

pin high impedance. PCs connected to the upstream module cannot transmit data to the

Simulator Interface Module, regardless of the DIP switch setting.

• The TXENABLE pin of the downstream module’s MAX3323 is still held high by its pull-up

resistor. As above, this pin is connected to pin 8 of the Power Board connector, but this is

not connected on the Power Module, so the TXENABLE pin is still held high. The downstream

module’s RS-232 transmitter remains enabled.

20 Pin names as defined in the MAX3323 data sheet.
21 The RS-232 receiver can also be disabled, but this functionality is not used in the Basic Serial Splitter Module.

Type 2 Simulator – Technical Reference Guide 1.8

32

Circuit Protection

Over-Current Protection
Primary over-current protection is provided by the 800mA fuse fitted to the Power Module.

Secondary over-current protection is provided by the selected LM340T-5.0 voltage regulator22 or

alternative Traco Power TSR 1-2450 switched buck regulator23. Both devices have internal short-

circuit protection and thermal shutdown features.

The LM340T-5.0 has internal thermal overload protection, and an internal short-circuit current limit

of 2.1A.

The short-circuit current limit of the Traco Power TSR 1-2450 is not specified in the data sheet, but

the maximum input current is given as 1000mA (1A).

Polarity Protection
The use of polarised connectors on all modules of the Liverpool Ringing Simulator minimises the

possibilities for reversed polarity connections between modules. However, many general-purpose

plug-in power supply units are provided with a selection of non-polarised reversible connector tips,

with the consequent risk of inadvertently connecting the power supply with the polarity reversed.

The Simulator Interface Module and the Basic Serial Splitter Module are therefore provided with a

reverse polarity protection diode, connected before the voltage regulator or other polarity sensitive

devices.

The diode specified is a 1N4001 device24, which has a maximum peak forward current rating of 1A,

and a peak inverse voltage rating of 50V, which is adequate for a fully specified simulator.

With correct power supply polarity, the diode is forward biased and conducts, allowing current to

flow to the rest of the Interface or Splitter Module. This is illustrated in the following diagram:

Figure 12 – Polarity Protection – Correct

22 https://www.ti.com/lit/gpn/LM340
23 https://www.tracopower.com/sites/default/files/products/datasheets/tsr1_datasheet.pdf
24 https://www.vishay.com/docs/88503/1n4001.pdf

https://www.ti.com/lit/gpn/LM340
https://www.tracopower.com/sites/default/files/products/datasheets/tsr1_datasheet.pdf
https://www.vishay.com/docs/88503/1n4001.pdf

Type 2 Simulator – Technical Reference Guide 1.8

33

If the power supply is connected with the polarity reversed, the diode is reverse biased and does not

allow current to flow, thus protecting the remainder of the electronics. The peak inverse voltage

rating of the diode provides protection up to 50V. Reverse polarity connection is illustrated in the

following diagram:

Figure 13 – Polarity Protection – Reversed

Transient Voltage Suppression
The Liverpool Ringing Simulator modules are fitted with Transient Voltage Suppression (TVS) diodes

to provide a degree of protection against induced over-voltage spikes on the power supply and

signal lines, for example resulting from local lightning strikes or electrostatic discharge events.

Uni-directional TVS diodes are used on logic and power supply lines. Bi-directional TVS diodes are

used on the RS-232 signal lines.

The key properties of the diodes specified are listed in the following table, taken from the device

data sheet:25

Table 4 – TVS Diode Key Properties

Part Number Reverse

Standoff

Voltage (VR)

Breakdown

Voltage (VBR)

Maximum

Clamping

Voltage (VC)

Maximum

Peak Pulse

Current

(IPP) (A)

Maximum

Reverse

Leakage

Current (IR @

VR) (µA)

SA5.0A 5.0 6.40 – 7.00 9.2 55.4 600

SA12A 12.0 13.30 – 14.70 19.9 25.6 1

SA15CA* 15.0 16.70 – 18.50 24.4 20.9 1

(* Bi-directional)

TVS diodes will not provide protection against direct lightning strikes. Disconnecting the Simulator

Interface cable from the Power Module is recommended when the simulator is not in use.

25
https://www.littelfuse.com/~/media/electronics/datasheets/tvs_diodes/littelfuse_tvs_diode_sa_datasheet.pd
f.pdf

https://www.littelfuse.com/~/media/electronics/datasheets/tvs_diodes/littelfuse_tvs_diode_sa_datasheet.pdf.pdf
https://www.littelfuse.com/~/media/electronics/datasheets/tvs_diodes/littelfuse_tvs_diode_sa_datasheet.pdf.pdf

Type 2 Simulator – Technical Reference Guide 1.8

34

The differences between the behaviour of uni-directional and bi-directional TVS diodes can be seen

in the following graphs:26

Figure 14 – TVS Diode Characteristic Curves

When reverse biased up to its Reverse Standoff Voltage, a uni-directional TVS diode does not

conduct (apart from the Reverse Leakage Current discussed further below). As the reverse voltage

reaches and exceeds the Breakdown Voltage, the diode starts to conduct, restricting the further

increase in applied voltage, until the Maximum Peak Pulse Current is reached, at which point the

voltage is effectively clamped at the Clamping Voltage.

When forward biased, a uni-directional TVS diode behaves much like a conventional rectifier diode

and starts conducting with a very small forward voltage drop.

A bi-directional TVS diode is effectively two diodes connected anode-to-anode. It therefore always

behaves as though it is reverse biased.

Note that the quoted values are not continuous ratings. TVS diodes are designed to absorb large

amounts of power during sub-millisecond spikes.

Uni-Directional TVS Diodes

12V Reverse Standoff Voltage uni-directional TVS diodes are fitted across the incoming unregulated

power supply rails of the following modules:

• Power Module

• 2nd PC Module

• Basic Serial Splitter Module

5V Reverse Standoff Voltage uni-directional TVS diodes are fitted across the 5V regulated power rails

of the Simulator Interface Module and the Sensor Modules, and between the 5V signal line and

ground on the Sensor Modules.

The uni-directional TVS diodes operate as follows: On power supply rails, the power rail is always

expected to be positive relative to ground rail; between +9V and +12V for the unregulated supplies,

and +5V for the regulated supplies.

26 From the data sheet, © 2020 Littelfuse, reproduced under fair use.

Type 2 Simulator – Technical Reference Guide 1.8

35

On data signal lines, the signal line is expected to be at +5V or 0V relative to the ground rail.

The TVS diode is connected as shown in the following diagram and is therefore normally reverse

biased at up to27 its rated Reverse Standoff Voltage, and no current flows through the diode:

Figure 15 – Uni-Directional TVS Diode

If a transient voltage event causes the power or signal line voltage to spike above Breakdown

Voltage of the TVS diode, the diode starts to conduct, holding the rail down to the Clamping Voltage

and dissipating the power of the spike. This is illustrated in the following diagram:

Figure 16 – Spike Dissipation (Uni-Directional)

If a transient voltage event causes the voltage of the ground rail to rise above that of the power rail

or signal line, the diode is forward biased and starts to conduct, clamping the two lines together and

dissipating the power of the spike.

27 “up to” because the suggested power supply is 9V or 12V depending on the installation.

Type 2 Simulator – Technical Reference Guide 1.8

36

Bi-Directional TVS Diodes

15V Reverse Standoff Voltage bi-directional TVS diodes are fitted between the RS-232 data lines and

ground in the following modules:

• Power Module

• 2nd PC Module

• Basic Serial Splitter Module

RS-232 data lines may operate in the range +15V to -15V relative to the ground rail28, but the typical

voltage swing achieved by the line drivers used in the Liverpool Ringing Simulator is ±8V (MAX233,

MAX208) or ±5.4V (MAX3323). These are still within the limits of the RS-232 specification, which

deliberately allows for wide ranges.

Because the RS-232 data lines swing both positive and negative relative to ground, uni-directional

TVS diodes cannot be used, and bi-directional TVS diodes are required.

The bi-directional TVS diodes operate as follows: Regardless of whether the RS-232 data line is

currently positive or negative relative to the ground rail, the TVS diode is always effectively reverse

biased at up to its rated Reverse Standoff Voltage, and no current flows through the diode:

Figure 17 – Bi-Directional TVS Diode

28 For introductions to RS-232, see the following: https://www.analog.com/en/resources/technical-
articles/fundamentals-of-rs232-serial-communications.html, https://www.arcelect.com/rs232.htm

https://www.analog.com/en/resources/technical-articles/fundamentals-of-rs232-serial-communications.html
https://www.analog.com/en/resources/technical-articles/fundamentals-of-rs232-serial-communications.html
https://www.arcelect.com/rs232.htm

Type 2 Simulator – Technical Reference Guide 1.8

37

If a transient voltage event causes the RS-232 data line spike outside the Breakdown Voltage of the

TVS diode (so above +15V, or below -15V), the diode starts to conduct, holding the rail down to the

Clamping Voltage and dissipating the power of the spike. The direction in which the diode conducts

depends on the polarity of the spike. This is illustrated in the following diagram:

Figure 18 – Spike Dissipation (Bi-Directional)

Leakage Current Issues

As noted above, the TVS diodes pass a Reverse Leakage Current when reverse biased, and for lower

voltage diodes this can be substantial. The SA5.0A diode has a leakage current up to 600µA at 5V,

and this can cause problems with microcontroller inputs.

Most sensors have “open-collector” outputs. When the sensor is triggered, a transistor inside the

sensor turns on and connects the output pin to the ground rail, pulling it low. When the sensor is not

triggered, the transistor turns off and the output pin “floats”. A pull-up resistor is required to pull the

pin high.

The ATmega328P microcontroller requires an input pin to reach approximately 3V (VIH Min) to be

considered “high”, and has weak internal pull-up resistors which can be activated in code to pull

floating input pins high29. The value of these resistors is not formally specified but is estimated to be

in the range 20kΩ – 50kΩ, and may vary between devices.

As well as being pulled high by the microcontroller internal pull-up resistor, the sensor output pin is

also connected the ground rail via a TVS diode. Reverse biased, the diode behaves like a resistor, and

the weak internal pull-up resistor and the TVS diode “resistor” form a simple voltage divider which

can be enough to hold the untriggered pin below the 3V required for it to be registered as high by

the microcontroller.

29 See INPUT_PULLUP in the Simulator Interface firmware code, for example.

Type 2 Simulator – Technical Reference Guide 1.8

38

This is illustrated in the following schematic:

Figure 19 – Leakage Current "Voltage Divider" Effect

To counteract this, the Sensor Modules are also fitted with a supplementary “helper” 10kΩ pull-up

resistor, as shows in the following diagram. A value of 10kΩ has been found adequate with the

sensors used, but if found necessary the value of this resistor could be reduced further to 4.7kΩ.

Figure 20 – Leakage Current – Supplementary Pull-Up Resistor

Type 2 Simulator – Technical Reference Guide 1.8

39

Connector Pin-Outs

Multiple Device Conventions
The following conventions are used by the Power/Data connections between the Simulator Interface

Module and any downstream devices (such as the Power Module or Multi-PC Modules, where these

are used).

• Data is transmitted by the Simulator Interface Module downstream on pin 2, and from board

Rev D, also on pin 6, using the second RS-232 transmitter in the MAX233.

• Upstream configuration data is received from the (or a) Simulator PC on pin 4.

• Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5

and 7 are used for the nominal +9V supply to the devices, and pins 1 and 3 are 0V.

• Any downstream device connected to a Simulator Interface should expect to find and to use

incoming serial data on pin 2 of the RJ45 Interface connector.

• Any downstream device connected to a Simulator Interface should assume that there may

also be incoming serial data on pin 6 of the RJ45 Interface connector30, and should loop pin 6

to pin 2 on any downstream connector31.

• Any downstream device which does not require to send data to an upstream Simulator

Interface should loop pin 4 of the RJ45 Interface connector to pin 4 on any downstream

connector32.

• Any downstream device which requires to send configuration data to an upstream Simulator

Interface should do so on pin 4 of the RJ45 Interface connector. This pin should also be

looped to pin 4 on any downstream connector.

• Where multiple devices have the potential to send configuration data to an upstream

Simulator Interface concurrently, a device should ground pin 8 to assert their right to send

on pin 433.

30 As there is from Interface Module Revision D onwards.
31 See the Second PC Module and Basic Serial Splitter Module connectors below.
32 For example, the Second PC Module.
33 For example, the Basic Serial Splitter.

Type 2 Simulator – Technical Reference Guide 1.8

40

Sensor Module Connector
The Sensor Modules use RJ45 connectors for the downstream cabling connection towards the

Simulator Interface, and upstream connections to other Sensor Modules in the same chain.

• Each Sensor Module presents its output signal on pin 8 of the downstream Interface

connector. Each Sensor Module takes any upstream sensor signals appearing on pins 4, 6

and 8 of the Next Sensor connector, and loops them through to pins 2, 4 and 6 respectively

of the Interface connector.

• Pin 2 of the Next Sensor connector is not used, and hence connecting more than four

sensors in one chain is not possible.

• Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5

and 7 are used for the +5V supply to sensors, and pins 1 and 3 are 0V. These pins are looped

through between the Interface and Next Sensor connectors.

The wiring of the female PCB connector is shown in the following diagram:

Figure 21 – Sensor Module Connector

The daisy-chain inter-connection of the sensors is illustrated in the following diagram:

Figure 22 – Sensor Chain Inter-Connection

Type 2 Simulator – Technical Reference Guide 1.8

41

Simulator Interface Module Sensor Connector
The Simulator Interface Module uses RJ45 connectors for the upstream cabling connection to the

Sensor Modules. A 4-gang connector is used, allowing the connection of up to 16 sensors.

The wiring of each female PCB connector is shown in the following diagram:

Figure 23 – Simulator Interface Module Sensor Connector

The layout of the 4-gang RJ45 PCB connector is shown in the following diagram:

Figure 24 – Simulator Interface 4-Gang Connector

Type 2 Simulator – Technical Reference Guide 1.8

42

Simulator Interface Module Power/Data Connector
The Simulator Interface Module uses an RJ45 connector for the downstream cabling connection to

the Power Module (or Multi-PC Modules, where these are used).

• Data is transmitted downstream towards the Power Module on pin 2 (and from board Rev D,

also on pin 6, using the second RS-232 transmitter in the MAX233), and upstream

configuration data is received from the Simulator PC on pin 4.

• Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5

and 7 are used for the nominal +9V supply to the interface, and pins 1 and 3 are 0V.

The wiring of the female PCB connector is shown in the following diagram:

Figure 25 – Simulator Interface Module Power/Data Connector

Type 2 Simulator – Technical Reference Guide 1.8

43

Power Module Power/Data Connector
The Power Module uses an RJ45 connector for the upstream cabling connection to the Simulator

Interface Module (or Multi-PC Modules, where these are used).

• Data is received from the upstream Simulator Interface Module on pin 2, and upstream

configuration data is sent to the interface on pin 4.

• In a basic single PC configuration, any data received on pin 6 is discarded. Pin 6 is connected

only to a TVS surge protection diode.

• Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5

and 7 are used for the nominal +9V supply to the interface, and pins 1 and 3 are 0V.

• Pin 8 is not connected. This is required for correct operation when the Basic Serial Splitter

Module is used.

The wiring of the female PCB connector is shown in the following diagram:

Figure 26 – Power Module Power/Data Connector

Type 2 Simulator – Technical Reference Guide 1.8

44

Second PC Module Connector
The Second PC Module uses RJ45 connectors for the upstream cabling connection to the Simulator

Interface, and the downstream connection to the Power Module.

• Power pins 1, 3, 5 and 7, and the spare pin 8 are looped through from the Interface

connector to the Power Board connector.

• Pin 4 is used to send data (marked RX – configuration data received from the point of view

of the upstream interface module) and is also looped through; this pin is not connected to

the 9-pin serial connector on the Second PC Module.

• Sensor data received on Pin 2 of the Interface connector (marked TX – sensor data

transmitted from the point of view of the upstream interface module) is routed to the 9-pin

serial connector on the Second PC Module.

• Sensor data received on Pin 6 of the Interface connector (marked TX2) is looped through to

pin 2 of the Power Board connector.

• Connecting more than two Second PC modules is therefore not possible; only the two most

upstream modules will receive data from the Simulator Interface Module.

The wiring of the female PCB connector is shown in the following diagram:

Figure 27 – Second PC Module Connector

Type 2 Simulator – Technical Reference Guide 1.8

45

Basic Serial Splitter Module Connector
The Basic Serial Splitter Module uses RJ45 connectors for the upstream cabling connection to the

Simulator Interface Module, and the downstream connection to the Power Module.

• Power pins 1, 3, 5 and 7 are looped through from the Interface connector to the Power

Board connector.

• Pin 4 is used to send data (marked RX – configuration data received from the point of view

of the upstream interface module) and is also looped through; where two Basic Serial

Splitter Modules are daisy-chained, the RS-232 transmitter of the upstream splitter module

is disabled. This mechanism is discussed in detail in a previous section.

• Sensor data received on Pin 2 of the Interface connector (marked TX – sensor data

transmitted from the point of view of the upstream interface module) is routed to the PCs

connected to the Basic Serial Splitter Module.

• Sensor data received on Pin 6 of the Interface connector (marked TX2) is looped through to

pin 2 of the Power Board connector. This data may be used a second, downstream Basic

Serial Splitter Module.

• Pin 8 on each connector is used to enable or disable the RS-232 transmitter of the upstream

splitter module where more than one Basic Serial Splitter Module is used.

• Connecting more than two Basic Serial Splitter Modules is therefore not possible; only the

two most upstream modules will receive data from the Simulator Interface Module, and the

transmitters of all but the most downstream module will be disabled.

The wiring of the female PCB connector is shown in the following diagram:

Figure 28 – Basic Serial Splitter Connector

Type 2 Simulator – Technical Reference Guide 1.8

46

DB9 Serial Connectors
The Power Module, Second PC Module and Basic Serial Splitter Module all use standard 9-pin female

sub-miniature D connectors (“DB9”) for serial data connections to attached Simulator PCs. The pin-

outs of these connectors are illustrated below.

DTEs & DCEs

In RS-232 communications, the description of connector pins as Transmit or Receive can be

confusing. Devices can be configured as Data Terminal Equipment (DTE) or Data Communication

Equipment (DCE). Traditionally, for example, a PC would be configured as a DTE, connected to a

modem configured as a DCE.

By convention, a DTE has a male connector, a DCE has a female connector, and the DTE-to-DCE

connection uses a female-to-male straight cable34. A PC acting as DTE transmits data to the DCE from

Pin 3 of the PC’s DB9 connector, which would be designated TD or TX; and receives data from the

DCE on Pin 2, designated RD or RX35. The DCE uses a female connector, receives data from the DTE

on Pin 3, still designated as the “transmit” pin on the DCE, and sends data to the DTE on Pin 2, still

designated as the “receive” pin on the DCE36.

The Simulator PC is a DTE. The Simulator Modules are fitted with female DB9 connectors and for

simplicity are all wired for use with straight cables, so are technically DCEs and should by convention

use DCE pin naming conventions.

However, to make the simulator module designs easier to follow, the schematics follow the transmit

and receive pin designations used by the ATmega328P microcontroller UART, and the RS-232 sides

of the Analog Devices (formerly Maxim) MAX233, MAX208 and MAX3323 line drivers. Following

these conventions, the module pins used for transmitting sensor data from the Simulator Interface

to the attached PC are marked TX, and the module pins used for receiving CLI data from the

attached PC to the Simulator Interface are marked RX. This is the opposite of the usual convention

for a DCE.

34 i.e. wired pin 1 to pin 1, pin 2 to pin 2, pin 3 to pin 3, and so on.
35 Just to add to the confusion, the Pin 2 RX and Pin 3 TX pin functions are swapped over on 25-pin (DB25) RS-
232 connectors.
36 Refer to the links to introductions to RS-232 given previously.

Type 2 Simulator – Technical Reference Guide 1.8

47

Power Module

The Power Module uses a female DB9 connector for the downstream cabling connection to the

Simulator PC.

• Pin 2 is used for simulator sensor data transmitted to the attached PC.

• Pin 3 is used for CLI data transmitted to the Simulator Interface from the attached PC.

The wiring of this connector is shown in the following diagram:

Figure 29 – Power Module DB9 Serial Connector

Second PC Module

The Second PC Module uses a female DB9 connector for the downstream cabling connection to the

Simulator PC.

• Pin 2 is used for simulator sensor data transmitted to the attached PC.

• Pin 3 is not connected. It is not possible to use the CLI from the PC attached to the Second

PC Module.

The wiring of this connector is shown in the following diagram:

Figure 30 – Second PC Module DB9 Serial Connector

Type 2 Simulator – Technical Reference Guide 1.8

48

Basic Serial Splitter Module

The Basic Serial Splitter Module uses female DB9 connectors for the downstream cabling

connections to the Simulator PCs.

• Pin 2 is used for duplicated simulator sensor data transmitted to each attached PC.

• As noted previously in the section on Transmitter Disabling in the Basic Serial Splitter

Hardware section of this document, only one selected Simulator PC connected to a Basic

Serial Splitter Module can be used to send CLI configuration data to the Simulator Interface

Module.

• Pin 3 will be used for CLI data sent to the Simulator Interface from the selected attached PC

only. On all other connectors this pin will connected to an inactive RS-232 receiver.

The wiring of this connector is shown in the following diagram:

Figure 31 – Basic Serial Splitter DB9 Serial Connectors

Type 2 Simulator – Technical Reference Guide 1.8

49

Simulator Interface Module Firmware

Sensor Characteristics
Over the years several different approaches have been used for detecting the position of a tied or

dumb bell and translating that position into a signal for use by a Simulator. These are discussed

above.

• For the purposes of the Type 2 Simulator Interface Module, the essential feature of the

sensor is that it should generate a signal pulse with a clean change of logic state when the

bell is at the bottom dead centre of its swing.

• The Type 2 Simulator Interface Module adopts the convention that the output of a sensor

should normally be logic high (~+5V), falling to logic low (~0V) for the duration of the pulse.

This approach retains compatibility with other similar systems.

• The minimum practical pulse duration is a few milliseconds, but should be long enough to

allow for the positive detection of good signals and the rejection of noise. Practical

implementations have shown actual pulse durations in the range 5ms-20ms.

• The design of the Simulator Interface Module firmware is such that the maximum apparent

pulse duration may be several hundred milliseconds. The state of the output from the sensor

is ignored from the time a good signal is confirmed to the expiry of the “guard timer”.

Type 2 Simulator – Technical Reference Guide 1.8

50

Firmware Design

Interrupt Driven vs Polling

As noted in the hardware section above, an interrupt-driven approach to the Simulator Interface

firmware would be problematic on the Atmel ATmega328P microcontroller hardware. The firmware

therefore uses a polling approach. After completing initialization and setup, the main code loop

cycles round all the configured bells’ inputs, processing signals from the Sensor Modules and sending

serial data to the Simulator PC as appropriate. After all bells have been processed, the code loops

round and the process starts again.

In the current version of code (v3.5), with the ATmega328P driven by an external 8MHz resonator,

each iteration of the main polling loop takes approximately 400µs when configured for 16 sensors,

which is fast enough for the disadvantages of polling not to be significant. Enabling debug mode and

the CRO timing pin increases the loop time by a few percent, but as these are not intended for active

simulator use this is also not significant.

The timing of the main loop using the CRO timing pin is illustrated in the following CRO capture:

Figure 32 – Simulator Interface Main Loop Timing

Processing of serial input from the Simulator, in the form of CLI commands, is triggered by the

standard Arduino serialEvent() function.

Type 2 Simulator – Technical Reference Guide 1.8

51

State Machine Operation

The Simulator Interface firmware maintains a set of 16 simple state machines, one for each bell. At

any given time, each state machine may be in one of three possible states: Waiting for Input,

Waiting for Debounce, Waiting for Guard Timer, Sensor Disabled, or Test Mode.

These changes of state are illustrated in the following diagram:

Figure 33 – State Machine Transitions Illustration

Waiting for Input

When a channel’s state machine is in the Waiting for Input state, on each iteration of the polling

loop the firmware code reads the state of the input pin connected to the associated channel, and

checks for a change in state (since the last poll) from logic HIGH to LOW, which would indicate the

start of a signal pulse from the connected Sensor Module.

• If no HIGH to LOW change in state is detected, then the Interface code does nothing other

than update its record of the last observed state of the input pin, and the code loop moves

on to the next bell.

• If the start of a sensor pulse is detected then the code calculates the time at which the input

de-bounce timer should expire (by adding the value of the global de-bounce timer to the

current time from the microcontroller’s internal clock, in effect setting a timeout value), and

switches the state machine into the Waiting for Debounce state. The default value for the

de-bounce timer is 2ms, but this can be configured through the Simulator Interface CLI.

Type 2 Simulator – Technical Reference Guide 1.8

52

Waiting for Debounce

When a channel’s state machine is in the Waiting for Debounce state, on each iteration of the polling

loop the firmware code reads the state of the input pin connected to the associated channel.

• If the pin state is detected as HIGH, then the input pulse previously detected has ceased. The

code treats this as a “misfire” and switches the state machine back to the Waiting for Input

state. The code loop moves on to the next bell.

• If the pin state is still LOW, the code compares the value of the de-bounce timeout with the

current time from the microcontroller’s internal clock.

• If the timeout value has not yet been reached, the code does nothing and moves on to the

next bell. The state machine remains in the Waiting for Debounce state.

• If the timeout has been reached or has been passed, the code sends the appropriate

character over the serial interface to the Simulator PC, and switches the state machine into

the Waiting for Guard Timer state.

Waiting for Guard Timer

When a channel’s state machine is in the Waiting for Guard Timer state, the firmware code

compares the value of the Guard Timer timeout with the current time from the microcontroller’s

internal clock.

• If the timeout value has not yet been reached, the code does nothing and moves on to the

next bell. The state machine remains in the Waiting for Guard Timer state.

• If the timeout has been reached or has been passed, the code switches the state machine

back into the Waiting for Input state, and the cycle starts again. The default value for the

Guard Timer is 10cs (100ms), but this can be configured through the Simulator Interface CLI.

• The channel input pin is not read in the Waiting for Guard Timer state (other than for

debugging purposes), effectively debouncing the end of the sensor pulse.

Disabled Sensor

When a channel’s state machine is in the Sensor Disabled state, the firmware code does nothing and

moves on to the next bell. Sensor Disabled state is enabled through the CLI or from EEPROM

configuration data during setup, and the state machine remains in the Sensor Disabled state until

reset through the CLI.

Note that the number of channels to be scanned on each iteration is determined dynamically with

reference to the highest numbered enabled channel: For example, if the highest numbered enabled

channel is channel 10, only channels 1 to 10 will be scanned, shortening the loop time. If the highest

numbered enabled channel is channel 16, then channels 1 to 16 will be scanned.

Test Mode

The Test Mode state implements a very simple test function, ignoring sensor inputs and generating

simple test patterns on the serial interface. Test Mode state is enabled through the CLI, and persists

until the interface is reset. This facility exists primarily for testing other components of a simulator

installation.

The foregoing description covers the core simulator functionality. In addition to this, debug code

provides additional timing and data gathering functions which are described later.

Type 2 Simulator – Technical Reference Guide 1.8

53

Timer Issues

The ATmega328P microcontroller lacks a true Real Time Clock. The library inbuilt timing functions

(millis() and micros()) return the number of milliseconds or microseconds respectively since the

microcontroller was last powered on or the last hardware reset. All times used within the software

are therefore offset times from this baseline.

The Simulator Interface firmware uses both the millis() and micros() functions for its main timing and

delay calculations (micros() is used only by debugging code). These functions return 32-bit unsigned

long data types; consequently the value returned by micros() will increase and then overflow back to

zero after approximately 50 power-on days, and the value returned by micros() will overflow

approximately every 70 minutes.

These overflows would disrupt simulator processing, as state machines may become “stuck” waiting

for an overflowed timer to expire.

• In the case of the micros() timer, which is used for the sensor debounce timer, the Simulator

Interface firmware attempts to catch this overflow, and looks for timer expiry times which

are an unreasonably long time into the future.

• For the millis() timer, the current version of Simulator Interface firmware will require a

power cycle or reset to clear the problem. This issue may be addressed in a future version of

the firmware. However, this is considered a low-priority issue because it is unlikely that a

Simulator Interface will be left powered up for such extended periods of time.

Sensor De-Bouncing

The Simulator Interface firmware reacts to the start of a pulse from a sensor. In practice the output

from some sensor types may be noisy and consist of a number of very short pulses, especially at the

start or end of a pulse. This is known as “bounce”, a term derived from the physical elastic bounce of

a mechanical contact. This is illustrated in the following diagram:

Figure 34 – Sensor De-Bounce Illustration

The current version of the Simulator Interface code reacts to the first observed transition in the

output of the sensor (indicated by the red arrow on the diagram).

The code then requires that the sensor signal remains stable for at least the duration of the global

debounce timer (default 2ms, configurable). If the detected signal ceases within that interval then

the signal is treated as a “misfire”, is ignored, and the code returns the state machine to the Waiting

for Input state. The debounce timer is specified in milliseconds, but calculated in microseconds for

improved consistency. The resolution of the microsecond timer is 8µs.

Type 2 Simulator – Technical Reference Guide 1.8

54

When the state machine has switched into the Waiting for Guard Timer state, the input pin is not

read at all (other than by debug code, which includes specific detection and reporting of multiple

pulses), and any sensor bounce is therefore ignored. Provided that the overall sensor pulse is shorter

than the duration of the guard timer, this effectively de-bounces the input. Typically, the input pulse

from an optical sensor will be a few milliseconds in duration, and the guard time several hundred

milliseconds, so this is not a practical issue.

In testing, no evidence of sensor bounce from the standard infra-red optical or Magnetic Sensor

Modules was observed, within the resolution of the debug timing code and the microsecond timer.

Debugging & Timing Features

In addition to the core timing and delay functions described above, which are required for core

Simulator operation, the Simulator Interface firmware implements further timing and data gathering

for debugging and experimental purposes. This output is not suitable for sending to Simulator

Software package, but may be accessed via a terminal emulator such as PuTTY.

This debugging functionality is not part of the MBI Protocol specification.

Under normal operations, each pulse from a Sensor Module causes one ASCII character (following

the conventional ringing notation of 1-9, 0, E, T) to be sent via the serial port for use by the

Simulator PC, as defined in the MBI Protocol specification.

The following debugging features are available in firmware v3.5:

Debug Mask

The Debug Mask allows for debugging output to be enabled on a specific subset of input channels.

• This may be used to reduce the volume of debug output generated during fault finding. By

default, the mask enables debugging on all 16 channels.

• The Debug Mask setting may be saved in non-volatile EEPROM37.

• Note that enabling Debug Mode globally suppresses normal simulator output for all

channels, not just those set in the debug mask.

Debug Pulse Timer

When the Debug Pulse Timer flag is set, each valid input pulse will generate output on a separate

line, with the following space separated data fields:

• The identifier “S”,

• The channel number (1-16),

• The mapped ASCII character (1-90ETABCDWXYZ),

• The guard timer expiry offset time in milliseconds,

• The duration of the (first) detected pulse, in microseconds,

• The total number of pulses detected before the expiry of the guard timer,

• The delta between the start of this input pulse and the start of the previous one, in

milliseconds.

37 The Debug Mask is saved to EEPROM if the Save Settings CLI command (“S”) is invoked when Debug Mode is
active.

Type 2 Simulator – Technical Reference Guide 1.8

55

Note that the pulse length timing code is not entirely robust: the assumption is made that the first

Sensor Module pulse will be shorter than the guard timer. If the first pulse has not completed by the

time the guard timer expires, a spuriously large result would be displayed for the pulse length,

because the last recorded pulse end time (from the previous sensor pulse) will be before the current

pulse start time, and the unsigned long data type will overflow. This is trapped by the code and

displayed as a zero duration. This limitation affects debugging output only.

Debug Show Misfires

When the Debug Show Misfires flag is set, pulses shorter than the de-bounce timer will generate

output on a separate line, with the following space separated data fields:

• The identifier “M”,

• The channel number (1-16),

• The mapped ASCII character (1-90ETABCDWXYZ),

• The debounce timer expiry offset time in microseconds,

• The duration of the (first) detected pulse, in microseconds.

Debug Swing Timer

When the Debug Swing Timer flag is set, each valid input pulse will generate output on a separate

line, with the following space separated data fields:

• The identifier “T”,

• The channel number (1-16),

• The mapped ASCII character (1-90ETABCDWXYZ),

• The duration of the current swing in milliseconds,

• The delta between the duration of the current and previous swing, in milliseconds.

The swing timer is intended to be used to check how close the sensor is to the BDC point, with the

bell down and swinging through small arcs.

The duration of the current swing is defined as the period between the start of the most recent

sensor pulse and the start of the sensor pulse immediately previous (and thus is always positive).

The swing time delta is the difference between the current swing duration and that of the swing

immediately previous (and may be positive or negative). Adjust the position of the sensor to get the

delta value as close to zero as possible.

Type 2 Simulator – Technical Reference Guide 1.8

56

Debug Show Debounce

When the Debug Show Debounce flag is set, pulses longer than the debounce timer will generate

output on a separate line, with the following data fields:

• The identifier “D”,

• The channel number (1-16),

• The mapped ASCII character (1-90ETABCDWXYZ),

• The debounce timer expiry offset time in microseconds.

Debug Show LED

When the Debug Show LED flag is set, the diagnostic LED output will be enabled for all bells for

which debugging is enabled. By default, the diagnostic LED indicates pulses detected on channel 1

only.

Debug Settings

Debug settings other than the Debug Mask are volatile and are not retained in EEPROM. Resetting

the Simulator Interface will revert to the following default debug settings:

• Debug Mode: Off

• Debug Flags: Debug Pulse Timer

• Debug Mask: EEPROM Value

Note that changes to the configured Debug Flags and the Debug Mask are remembered if Debug

Mode is disabled via the CLI, so debugging may be resumed easily with the same settings.

Serial Input & Command Line Interface

The Simulator Interface firmware implements a simple Command Line Interface (CLI), which may be

used to configure certain aspects of the Interface, or to gather debugging and timing data. This

functionality is not part of the MBI Protocol specification.

The Simulator Interface also must handle legitimate MBI Protocol commands and delay data sent by

the Simulator Software, in order to differentiate these from CLI input (even though these data are

not used by the Type 2 Simulator Interface). This processing is done inside the Arduino serialEvent()

function, with the CLI itself handed off to a set of separate functions.

To achieve this, the firmware adopts the following strategy when handling serial input.

• The first byte received is examined. If this byte is the MBI Protocol 0xFD command, a 0xFD

response is sent. If the first byte is any other recognised MBI Protocol command (See

Appendix B), it is discarded. No other responses are sent to MBI commands.

• If the first byte is not a recognised MBI Protocol command, it may be the first of a set of

updated delay values. There is no defined command byte defined in the MBI Protocol to

precede a set of delay values, so the Simulator Interface attempts to read a full set of 13

bytes (12 values plus the specified terminator byte) within a defined timeout interval (one

second in the current v3.8 firmware).

• If 12 values plus the correct terminator byte have been received within the timeout period,

these are assumed to be delay values, and all 13 bytes are discarded.

Type 2 Simulator – Technical Reference Guide 1.8

57

• If a full set of values cannot be read, or the terminator is incorrect, the first (and possibly

only) byte read is passed on to the CLI handler for further examination. Any bytes after the

first are discarded.

• If the received byte is a recognised CLI command (Appendix B), it is processed, and any

appropriate response sent.

• If the received byte is not a recognised CLI command, it is discarded.

The diagnostic LED is used to indicate that a CLI command has been received, or that an error

occurred. The CLI command are documented in Appendix D below.

Sensor Enable/Disable

The Simulator Interface firmware can be configured to disable any individual sensor input, for

example to bypass temporarily a faulty sensor. Disabled inputs are ignored by the firmware, and

generate no serial output, including debugging output. This behaviour is configured using CLI

commands (Appendix D), accessed via a terminal emulator. The enabled or disabled state of each

input channel is stored in non-volatile EEPROM.

As noted above, the number of channels to be scanned on each iteration is determined dynamically

with reference to the highest numbered enabled channel.

Memory Footprint

The ATmega328P has a very limited 2kByte SRAM capacity. The MemoryFree software library has

been incorporated into the Simulator Interface code to track SRAM usage. This may be displayed via

the Interface CLI. Flash (Program) Memory usage is reported by the Arduino IDE when the software

sketch is compiled.

The memory footprint of the Simulator Interface firmware v3.8 on an ATmega328P is as follows:

• 13,016 / 32,768 Bytes Flash Memory

• 839 / 2,048 Bytes SRAM

• 23 / 1,024 Bytes EEPROM

The compiler F() macro has been used throughout the Interface code to store static text strings into

program memory, thus relieving pressure on SRAM. As a result, the current v3.8 of the Interface

firmware can run on older ATmega168 microcontrollers with 16kBytes of Flash Memory and only

1kByte of SRAM38.

38 Contact the project for guidance on the adjustments required to install firmware on the ATmega168P
microcontroller.

Type 2 Simulator – Technical Reference Guide 1.8

58

Metrics
The effects of three key metrics have been considered in the design of the Simulator Interface

firmware. These are:

• The inter-blow interval: The rate at which the Simulator Interface is required to detect and

transmit signals from all Sensor Modules to the Simulator during normal ringing.

• The inter-row interval: The rate at which the Simulator Interface is required to detect signals

from any one Sensor Module during normal ringing.

• The Sensor Pulse Duration: The length of the pulse from each Sensor Module which the

Simulator Interface is required reliably and unambiguously to detect.

Each of these metrics is considered further below.

Inter-Blow Interval Requirements

For any given ring of bells, the inter-blow and inter-row requirements can be estimated from the

known speed of ringing.

For example, for the Liverpool Cathedral bells, taking 4h 30m as a representative speed for a peal of

5042 changes of Maximus on the (82cwt) twelve, the inter-blow interval in rounds is given by the

calculation:

(270 minutes x 60 seconds) / (5042 changes x 12 bells) = 0.268s or 268ms

Taking 3h 15m as a representative speed for a peal of 5056 changes of Major on the light (24cwt)

eight, the inter-blow interval in rounds is given by the calculation:

(195 minutes x 60 seconds) / (5056 changes x 8 bells) = 0.289s or 289ms

The serial protocol used by the Simulator Interface Module runs at 2400 bits per second, and sends a

single ASCII character for each blow of each bell. Each character comprises 10 bits (8 data bits, plus 1

start bit and 1 stop bit), giving a maximum continuous data rate of 240 characters per second, or

approximately 4.2ms per character.

This confirms that the Simulator Data Connection has sufficient capacity, and has a resolution of

approximately 1.6% of the inter-blow interval. Put another way, if the bells are fired accurately then

the signals from all 12 bells can be sent over the data link to the Simulator PC within 51ms, or less

than one fifth of the normal inter-blow interval. (True firing, the simultaneous striking of more than

one bell, is not achievable with a Simulator Interface of this design.)

Under normal operation, where one byte at a time is sent to the Simulator PC, the serial print

function call is non-blocking and operates asynchronously, so the main code loop is not slowed down

or paused while data is sent to the Simulator PC39.

(Note that generating detailed debugging output from a large number of bells can cause the serial

output buffer to fill and the serial print function to block. This can cause issues with timing behaviour

and debugging output.)

39 https://blog.arduino.cc/2011/10/04/arduino-1-0/

https://blog.arduino.cc/2011/10/04/arduino-1-0/

Type 2 Simulator – Technical Reference Guide 1.8

59

A more detailed analysis of the inter-blow intervals for a large sample of rings of bells may be found

in Appendix C.

Inter-Row Interval Requirements

The inter-row interval follows from a similar calculation:

For the Liverpool Cathedral bells, taking 4h 30m as a typical speed for a peal of 5042 changes of

Maximus, the inter-blow interval in rounds is given by the calculation:

(270 minutes x 60 seconds) / 5042 changes = 3.21s

Taking 3h 15m as a typical speed for a peal of 5056 changes of Major on the light (24cwt) eight, the

inter-blow interval in rounds is given by the calculation:

(195 minutes x 60 seconds) / 5056 changes = 2.31s

As discussed below, the Simulator Interface firmware runs with a loop time of approximately 400µs,

giving a resolution of less than 0.017% of the typical 12-bell inter-row interval.

A more detailed analysis of the inter-row intervals for a large sample of rings of bells may be found

in Appendix C.

Sensor Pulse Duration

For a typical, the theoretical expected duration of the signal pulse from the Sensor Module is a

function of the width of the trigger (e.g., 25mm wide reflective tape or 20mm diameter magnets in

the current installations) and the linear speed of the rim of the bell wheel as the bell passes through

the bottom dead centre trigger point.

This linear speed can be approximated as 4πR/T, where R is the radius of the wheel, and T is the

pendulum period of the bell for small oscillations. This calculation is based on the work of Frank King

of Cambridge40. Applying the basic equations of motion to these parameters produces theoretical

pulse durations of approximately 4ms.

However, this does not take into account the actual size of the sensor head, and the fact that the

sensor head may activate before the trigger is fully axially aligned with the module (and will not

deactivate until after the trigger has ceased to be fully axially aligned). In addition to this, the

detection zone on many sensors is effectively conical, and at the wheel is therefore somewhat larger

than the physical diameter of the detector.

40 https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf

https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf

Type 2 Simulator – Technical Reference Guide 1.8

60

The following diagram illustrates this effect:

Figure 35 – Sensor Pulse Duration Illustration

In the diagram above, the Sensor Module signal pulse starts before the trigger is fully aligned with

the sensor (top red arrow), and ends after the trigger has cease to be fully axially aligned (bottom

red arrow). Thus, the effective width of the trigger, and the duration of the resulting pulse, are

increased.

This is supported by evidence: An analysis of the theoretical and observed sensor pulse durations

from the optical Sensor Heads of the original Liverpool Cathedral Simulator installation can be found

in Appendix C. The sensor shielding tube has an internal diameter of approximately 17mm, and the

observed values of pulse duration, approximately 6ms, indicate that the effective width of the

reflector is increased from the actual 25mm to approximately 40mm.

Type 2 Simulator – Technical Reference Guide 1.8

61

Potential Problems
The use of a polling approach in the Simulator Interface results in a number of potential problems:

Missed Sensor Signals

If the Simulator Interface firmware polling interval is longer the pulse emanating from a Sensor

Module, then there is a risk that some pulses may be missed. If a pulse starts just after the polling

loop has examined a particular input pin, the pulse will have completed before the polling loop next

returns to that input pin. As a result the pulse will be missed and no signal will be sent to the

Simulator.

The following diagram illustrates this problem:

Figure 36 – Missed Sensor Signals Illustration

The red dashed arrows indicate the point at which the polling loop examines a particular input pin.

During the remainder of the polling loop an incoming sensor pulse begins and completes without

ever being detected.

Given a typical pulse duration of approximately 6ms, and a maximum polling loop duration of

approximately 400µs, each pulse therefore lasts approximately 15 polling loop cycles, so this

problem does not arise.

Duplicated Sensor Signals

If the Simulator Interface firmware polling interval is shorter than the pulse emanating from a Sensor

Module (which, as noted above, is a requirement for reliable detection), then there is a probability

that some pulses may be detected more than once. If the polling loop examines a particular input

pin just after a pulse starts, then that pulse may still be in progress when the polling loop next

returns to the same input pin. As a result the pulse will be detected more than once and duplicate

signals would be sent to the Simulator PC.

Type 2 Simulator – Technical Reference Guide 1.8

62

The following diagram illustrates this problem:

Figure 37 – Duplicated Sensor Signals Illustration

The red arrows indicate the points at which the polling loop examines a particular input pin. Because

the incoming sensor pulse is longer than the polling loop, it is still in progress during the next loop,

and would be detected again.

This problem is avoided by triggering based on detecting the transition of the input pin state from

HIGH to LOW, and keeping state in the Interface code. Therefore, when the polling loop next returns

to the input pin, the pin is still LOW, but no state transition is detected, and no duplicate signals are

sent.

It will be observed that decreasing the polling loop duration to avoid the Missed Sensor Signals

problem results in the manifestation of the Duplicated Sensor Signals problem, and vice-versa.

Variable Odd-Struckness

A further problem arising from the use of a polling architecture in the Simulator Interface is variable

odd-struckness.

• If a pulse from any particular Sensor Module starts a fraction of a second before the polling

loop examines the associated input pin, the pulse will be detected almost immediately.

• If the pulse starts a fraction of a second after the polling loop examines the associated input

pin, the pulse will be detected on the next iteration of the polling loop, in this case

approximately 400µs later.

• There is no fixed correlation between the start time of a pulse and the current position of

the polling loop in its cycle, and therefore each pulse is subject to an effectively random

delay of between zero and 400µs (the duration of the polling loop).

• This would be experienced as the simulated bell striking randomly early or late by between

zero and half the polling interval.

Type 2 Simulator – Technical Reference Guide 1.8

63

The following diagram illustrates this problem:

Figure 38 – Variable Odd-Struckness Illustration

The upper red arrow indicates the polling loop examining a particular input pin just after the start of

an incoming sensor pulse. The delay due to polling is effectively zero. The lower red arrow indicates

the polling loop examining a particular input pin just before the start of an incoming sensor pulse,

and detecting the pulse on the next iteration of the loop. The delay due to polling is effectively equal

to the polling loop interval.

Given a typical inter-row interval of say 2.3s, and a maximum polling loop duration of approximately

400µs, the variable odd-struckness contributed due to this problem is therefore between zero and

±0.009% of the inter-row interval, and in practice this is not detectable. Even for much lighter rings

of bells with much shorter inter-row intervals this may still be assumed to be negligible.

Scope does exist to reduce the length of the polling loop further. The debug and timing code

contribute approximately several tens of microseconds to the loop time, and could be omitted

entirely from production code.

Latency

The latency of a simulator system is the delay between the bell triggering the sensor at BDC, and the

arrival of the corresponding signal at the Simulator PC.

The latency of the simulator system is not critical in BDC detecting systems, provided it is relatively

small (much less than the time between BDC and strike), is reasonably consistent, and is symmetrical

about the BDC position. Latencies of up to several tens of milliseconds may be accommodated by

tuning the delay time applied by the Simulator PC.

The latency of the simulator consists of the sum of the following:

• The debounce timer,

• The polling loop time,

• The RS-232 serial speed.

Type 2 Simulator – Technical Reference Guide 1.8

64

The default debounce timer is set to 2ms. As discussed above, the polling approach results in some

variation of detection time, and the polling loop time is approximately 400µs. Moving the state

machine from Waiting for Input to Waiting for Debounce, and then detecting the end of the

debounce timer, involves two polling events. The average latency from the start of a sensor pulse to

the start of the serial transmission should therefore be approximately41 2.4 ±0.2ms.

The serial line speed is 2400bps. Each ASCII character transmission consists of 10 bits (8 data bits,

preceded by one start bit and followed by one stop bit). The time taken to transmit one character is

therefore approximately 4.2ms and is constant.

The theoretical total latency of the simulator is therefore approximately 6.6 ±0.2ms. Any additional

latency arising in the Simulator Software Package is beyond the scope of this discussion but may be

compensated for by tuning the delay time applied by the software.

The typical latency of the Simulator Interface is illustrated in the following annotated CRO capture:

Figure 39 – Simulator Interface Latency

• The upper yellow trace represents a simulated sensor pulse measured on a Simulator

Interface Module input pin. The duration of the pulse is approximately 5ms, and the pin

transitions from +5V to 0V at the start of the pulse.

• The lower blue trace represents the RS-232 serial transmission, measured on the serial

transmit pin of the same interface.

• On the serial line, logic 0 is a high voltage (approximately +8V), logic 1 is low (approximately

-8V), and the bus idles at the logic 1 level42. The start bit is logic 0, the stop bit is logic 1, and

hence the end of the stop bit cannot be distinguished from the idle level.

41 This estimate does not consider the resolution of the microsecond timer, 8µs.
42 Note that these are for the RS-232 serial interface. The TTL serial interfaces between the microcontroller and
the line driver operates between 0V and +5V, with inverted logic.

Type 2 Simulator – Technical Reference Guide 1.8

65

• The character transmitted is ASCII “1” (0x31), binary 00110001, and is transmitted LSB first.

Reading from left to right, the total bit stream is therefore “0100011001” (10 bits: a logic 0

start bit, ASCII “1” LSB first, and a logic 1 stop bit).

• The delay between the start of the sensor pulse and the start of the serial transmission is

measured over multiple pulses as being between 2.200ms and 2.660ms, average 2.442ms.

The latency start to end of the serial transmission can be estimated as approximately 4.2ms.

These values are very close to the theoretical predictions.

The following logic analyser decode taken at the MAX233 transmitter input shows the same effect:

Figure 40 – Logic Analyser Decode

• Trace D0 is taken from the TTL level signal at the MAX233 transmitter input. The signal is

therefore inverted with respect to the transmitter output recoded by the previous

oscilloscope trace.

• Trace D1 is the trigger, taken from the channel 1 sensor line. Recording started at Time 0

when this line transitioned to logic 0. This was a manual trigger, so the end of the trace is

not visible as the pulse was more than 8ms long.

Type 2 Simulator – Technical Reference Guide 1.8

66

Software Development & Compatibility

Development Environment

The current Simulator Interface firmware has been developed on the following versions of operating

systems, development tools and Simulator Software packages. Later versions of tools are expected

to be compatible:

• Microsoft Windows 10 64-bit

• Arduino IDE 1.8.19

• PuTTY 0.81

• PortMon 3.0343

Source Code Availability

The current version of the firmware for the Simulator Interface is available from the project GitHub

repository at https://github.com/Simulators. The firmware is released under the GNU General Public

Licence (GPL), Version 3.

Simulator Software Compatibility

Tested Configurations

The Type 2 Liverpool Ringing Simulator Interface has been tested successfully with Simulator

Software Packages up to the following versions:

• Abel 10.3.2

• Beltower 2025 (14.05)

• Virtual Belfry44 3.10

Untested Configurations

Compatibility with the Bagley Ringleader hardware simulator has not been tested. This device has

been unavailable for purchase for some time due to key components no longer being available.

Future Simulator Support

The Simulator Interface software has also been structured to allow for the future addition of support

for other simulators should this be necessary.

43 PortMon is not available for 64-bit systems.
44 3.1b is the minimum version of Virtual Belfry required for proper handling of interfaces of this type.

https://github.com/Simulators

Type 2 Simulator – Technical Reference Guide 1.8

67

USB-to-Serial Adapters
If the Simulator PC does not have an available RS-232 serial port, then a USB-to-Serial adapter may

be used. These are available from a variety of manufacturers, but mainly use controller chips

manufactured by Prolific and FTDI.

Modern versions of Windows include drivers for many USB-to-Serial adapters. However, older

versions of Windows or some adapters may require the installation of software drivers. This section

illustrates the installation process for older versions of Windows. Consult the documentation for

your USB-to-Serial adapter to check whether the adapter is supported on your version of Windows,

and whether manual driver installation is required.

This section also illustrates the process for renumbering COM ports if your adapter is assigned a

COM port number outside the range supported by your Simulator Software Package. The process is

similar on later versions of Windows.

Drivers for adapters based on Prolific45 and FTDI46 controllers are available from the respective

websites; the driver required is the Virtual COM Port or VCP version.

A typical USB-to-Serial adapter (in this case from Prolific) is shown in the following photograph.

Figure 41 – Example of a USB-to-Serial Adapter

45 https://www.prolific.com.tw/US/index.aspx
46 https://ftdichip.com/drivers/vcp-drivers/

https://www.prolific.com.tw/US/index.aspx
https://ftdichip.com/drivers/vcp-drivers/

Type 2 Simulator – Technical Reference Guide 1.8

68

Driver Installation

Follow the installation instructions supplied with the USB-to-Serial port driver software package. This

example uses adapters and drivers with both Prolific and FTDI chipsets, but the approach is similar

for adapters from other vendors.

1. Run the installer supplied with the driver software package. Both Prolific and FTDI drivers

use a standard Windows installer.

Figure 42 – Prolific Driver Installation

Type 2 Simulator – Technical Reference Guide 1.8

69

2. When the installation is complete, close the installer. A restart of the PC may be required.

Figure 43 – Driver Installation Complete

3. Connect the USB-to-Serial adapter to a spare USB port on the Simulator PC. To ensure

consistent COM port numbering and avoid the need to reconfigure the Simulator Software

Package, it is best always to use the same USB port for the adapter.

4. The Simulator PC should detect the USB-to-Serial adapter, configure the driver, and a

confirmation balloon message should appear briefly above the Windows system tray.

Figure 44 – Found New Hardware Message

Type 2 Simulator – Technical Reference Guide 1.8

70

Driver Verification

To verify that the USB-to-Serial adapter driver is correctly configured, open the Windows Device

Manager and look for the adapter in the Ports section.

1. Right-click the Computer or My Computer icon on the Windows desktop and select the

Properties menu item. These examples are from Windows XP and Windows 7 PCs, the

process and appearance may vary for other versions of Windows.

Figure 45 – My Computer Context Menu (Windows XP)

Figure 46 – Computer Context Menu (Windows 7)

Type 2 Simulator – Technical Reference Guide 1.8

71

2. On Windows XP, click on the Hardware tab, and then click the Device Manager button.

Figure 47 – System Properties Hardware Tab (Windows XP)

3. On Windows 7, click the Device Manager button.

Figure 48 – System Properties Hardware Tab (Windows 7)

Type 2 Simulator – Technical Reference Guide 1.8

72

4. Expand the Ports (COM & LPT) section of the Device Manager list. The USB-to-Serial adapter

should be listed, and the COM port number identified. In this example the adapter has been

assigned the Virtual COM Port number COM3.

Figure 49 – Device Manager (Driver Installed)

5. If the device driver software has not been installed correctly, the adapter may be found with

a warning marker in the Other Devices section of the device list. Install the device driver

software or refer to the documentation for the USB-to-Serial adapter.

Figure 50 – Device Manager (Driver Missing)

Type 2 Simulator – Technical Reference Guide 1.8

73

COM Port Reconfiguration

Current versions of specific Simulator Software Packages require that the Virtual COM Port number

assigned to a USB-to-Serial adapter is in a specified range47. If the adapter has been assigned a COM

port number outside the supported range, the port must be reconfigured to lower value48.

1. Open the Windows Device Manager as described above.

2. Expand the Ports (COM & LPT) section of the Device Manager list. The USB-to-Serial adapter

should be listed, and the COM port number identified. In this example the Prolific adapter

has been assigned the Virtual COM Port number COM14, which is beyond the range

supported by Abel.

Figure 51 – Device Manager (Port COM14)

47 Abel: COM1 – 8. Beltower: COM1 – 32 (8 prior to Beltower 2016).
48 Virtual Belfry does not have this requirement.

Type 2 Simulator – Technical Reference Guide 1.8

74

3. Right-click the USB-to-Serial adapter entry and select the Properties menu item.

Figure 52 – Device Manager Context Menu

4. Click on the Port Settings tab, and then click the Advanced… button.

Figure 53 – COM Port Properties

Type 2 Simulator – Technical Reference Guide 1.8

75

5. Use the COM Port Number dropdown to select a COM port number in the range COM1 to

COM8. Then click OK. Note that some values may be listed as “in use” if they have ever been

assigned (for example, if other USB devices have been attached to the PC in the past). Use

the Device Manager to determine which COM ports are in use.

Figure 54 – COM Port Advanced Settings (Prolific)

6. The Advanced Settings window for the FTDI driver is more complex, but the reconfiguration

method is the same.

Figure 55 – COM Port Advanced Settings (FTDI)

Type 2 Simulator – Technical Reference Guide 1.8

76

7. It may be necessary to unplug the USB-to-Serial adapter, then plug it back before the

adapter is correctly identified and initialised with the new COM port number.

Figure 56 – Device Manager (Reconfigured Port COM3)

Type 2 Simulator – Technical Reference Guide 1.8

77

Interconnecting Type 1 & Type 2 Simulators

Compatibility
Type 1 and Type 2 sensors and Simulator Interfaces are electrically compatible, both using +5V

power supplies and active-low outputs, but the two generations of the simulator use different

connectors, cabling, and wiring conventions.

Some installations may have a requirement to interconnect Type 1 and Type 2 hardware, for

example to expand an existing Type 1 installation with additional Type 2 sensors. A simple adapter

has been designed for this purpose.

Type 1 – Type 2 Interface Adapter
The Type 1 – Type 2 Interface Adapter is designed to allow Type 2 sensors (using RJ45 connectors) to

connect to a Type 1 Simulator Interface (using GX16-4 connectors). The adapter allows up to four

Type 2 sensors, connected in a single chain, to connect to a Type 1 interface.49

An example of a completed Interface Adapter and cable is shown in the following photograph, in this

case wired to support connecting two Type 2 sensors to a Type 1 interface. The Type 1 interface

sensor connectors may need to be modified with additional link wires to support multiple sensors;

this is described in detail below.

Figure 57 - Type 1 - Type 2 Adapter

49 The adapter may also be used to connect Type 1 sensors to a Type 2 interface, although this is not

described in this guide.

Type 2 Simulator – Technical Reference Guide 1.8

78

The connection and cabling requirements for the adapter are summarised in the following table:

Table 5 – Type 1 – Type 2 Interface Adapter Requirements

Number of Type 2

Sensors Connected

Number of Adapter

Cables Required

Number of Type 1

Sensor Connectors

Type 1 Interface Link

Wires Required?

1 1 1 No

2 1 1 (plus 1 unused) Yes - 1

3 2 2 (plus 1 unused) Yes - 1

4 2 2 (plus 2 unused) Yes - 2

The construction of the adapter cables and the configuration of link wires in the Type 1 Simulator

Interface are described below.

Type 2 Simulator – Technical Reference Guide 1.8

79

Schematic

Type 2 Simulator – Technical Reference Guide 1.8

80

Interface Adapter PCB
Eagle CAD files and manufacturing Gerber files for the Interface Adapter PCB are available in the

Type 2 GitHub repository. The Interface Adapter PCB is the same size as a Type 2 sensor PCB and will

fit in the same size 0.07 Litre Really Useful Box®.

The following diagram shows the layout of the Type 1 – Type 2 Interface Adapter PCB. All

components are mounted on the top (silkscreen) side of the board.

Figure 58 - Type 1 - Type 2 Adapter Board Layout

An example of a completed Interface Adapter is shown in the following photograph. As shown, this

adapter would support the connection of up to two Type 2 sensors to a Type 1 Simulator Interface.

An additional 4-way connector would need to be installed on the board to support a further two

Type 2 sensors.

Figure 59 - Type 1 - Type 2 Adapter PCB

Type 2 Simulator – Technical Reference Guide 1.8

81

Parts List
Table 6 – Type 1 – Type 2 Interface Adapter Parts List

Reference Component Notes

PCB Type 1 – Type 2 Interface Adapter PCB

JP1 Amphenol RJHSE-508050 Farnell 1860577

JP2, JP2 4-Way Molex KK 254 Connector Farnell 1756798

(Molex 22-05-3041 Series 7478 PCB Header)

Farnell 1462809

(Molex 22-01-2047 Series 2695 Receptacle)

Farnell 2063734

(Molex 08-50-0113 Series 2759 Terminal)

Interface Adapter Cabling
The wiring of the Interface Adapter cables is shown in the following diagram. One cable can support

up to two Type 2 sensors, two cables are required to support up to four Type 2 sensors.

Figure 60 - Type 1 - Type 2 Adapter Cable

50 As used on the Power Module PCB

Type 2 Simulator – Technical Reference Guide 1.8

82

Type 1 Interface Wiring Modification
To support more than one Type 2 sensor connected via the Interface Adapter, the Type 1 interface

must be wired to support two sensors per GX16-4 connector. This approach is mentioned in the

Type 1 Simulator Sensors Hardware Manual to support Type 1 sensor heads with two sensors.

An example of the required modification is illustrated in the following diagram. In this example, the

Interface Adapter cable is connected to the top connector, Connector 1, and Connector 2 would be

unused. An additional link wire is fitted between pin 4 of Connector 1 and pin 3 of Connector 2, to

route the signal from the second sensor to the channel 2 of the interface.

Figure 61 - Type 1 Interface Connector Wiring Modification

Type 2 Simulator – Technical Reference Guide 1.8

83

Appendices

Appendix A: MBI Protocol Description
Note that although the Type 2 Liverpool Ringing Simulator uses the basic MBI serial protocol

described below, it does not upload or store the delay timers in the Simulator Interface Module, and

those parts of the protocol are not implemented. Delays are instead applied by the Simulator

Software Package on the Simulator PC. This allows the simulator to support more than 12 sensors

and allows more flexibility, for example in the simulation of raising and lowering.

The following description of the MBI Protocol is derived from information supplied by David Bagley

and Chris Hughes.

The MBI aggregates signals from a number of sensors, one per bell, into a stream of ASCII characters

sent over a RS-232 serial data link to the Simulator. This link operates at 2400 bps, 8 data bits, 1 stop

bit, no parity.

Within the MBI, each bell has a delay timer value configured which corresponds to the time between

the bell passing through the bottom dead centre of its swing, and the time the clapper would

normally strike the bell. These delay values are uploaded by the Simulator PC and stored by the MBI

in non-volatile memory.

When a signal from a Sensor Head is detected, the MBI applies the delay timer (appropriate to that

bell), and at the expiry of that timer the MBI sends the corresponding single ASCII character to the

Simulator, which then produces the simulated sound of that bell. The characters are defined using

the usual change ringing convention of “0”, ”E” & “T” for bells 10, 11 & 12. At present a maximum of

12 bells are supported by the protocol.

The MBI Protocol also includes provision for connecting up to 4 external command switches, for

which the characters sent are “W”, “X”, “Y” & “Z”. This behaviour is not currently supported by

Bagley MBI interface hardware, but Abel has support for the protocol functionality.

The MBI also receives serial input from the Simulator. The command set defined by the protocol is

described in Appendix B. Not all features of the command set are used by all Simulator applications.

Type 2 Simulator – Technical Reference Guide 1.8

84

Appendix B: MBI Protocol Commands
The following table lists the commands defined in the MBI Protocol.

Table 7 – MBI Protocol Commands

Command Function

0xFD The 0xFD command is used to detect the presence of a Simulator

Interface. The expected response is for the Interface to return one byte,

hexadecimal value 0xFD.

• This command is used by the tested version of Abel from version

10.3.2.

• This command does not appear to be used by tested versions of

either Beltower or Virtual Belfry.

• This command is supported by the Type 2 Liverpool Ringing

Simulator firmware from version 3.7 onwards.

0xFE The 0xFE command is used to retrieve the current timer delay versions

from the Simulator Interface. The expected response is for the Interface

to return 13 bytes, one byte for each bell in the order 1 to 12, containing

the current delay value in centiseconds expressed as a hexadecimal

value, and a trailing termination byte, hexadecimal value 0xFF.

• This command is used by the tested version of Beltower when

operating in MBI mode.

• This command does not appear to be used by the tested

versions of Abel or Virtual Belfry.

• This command is not used or supported by the Type 2 Liverpool

Ringing Simulator firmware.

0xNN … 0xFF Timer delay data is sent to the Simulator Interface by the Simulator

Software Package as a series of 13 bytes, one byte for each bell in the

order 1 to 12, containing the new delay value in centiseconds expressed

as a hexadecimal value, and a trailing termination byte, hexadecimal

value 0xFF. All 12 values are always sent, even if fewer than 12 bells are

configured. In this case the data is padded with 0x00 bytes.

• This command is used by tested versions of Abel, Beltower and

Virtual Belfry when operating in MBI mode.

• This command is not used or supported by the Type 2 Liverpool

Ringing Simulator firmware.

Type 2 Simulator – Technical Reference Guide 1.8

85

Appendix C: Metrics Tables

Inter-Blow & Inter-Row Interval

This appendix contains a more detailed analysis of the inter-blow and inter-row intervals for a large

sample of rings of bells. A total of 4096 records of peals and quarter peals were downloaded from

the Ringing World Bell Board database using the experimental XML API.

This data was then sanitised to remove all hand bell performances, any performances for which the

duration or number of changes was not specified, and to convert the duration to consistent units.

This left a total of 3080 performances comprising 54.7 Million blows for analysis.

The following table shows the results of this analysis:

Table 8 – Inter-Blow & Inter-Row Intervals

Bells51 Total

Performances

Total Blows Inter-Row

Interval (s)

Inter-Blow

Interval (ms)

12 111 4452144 2.93 244 Max

1.96 164 Min

2.41 200 Mean

10 265 8554130 2.84 284 Max

1.67 167 Min

2.22 222 Mean

8 1203 25199176 2.69 336 Max

1.25 157 Min

2.10 262 Mean

7 9 81396 2.26 323 Max

2.05 292 Min

2.18 312 Mean

6 1341 15074688 2.68 447 Max

1.06 177 Min

2.01 334 Mean

5 116 1168285 3.00 600 Max

1.12 224 Min

1.99 398 Mean

4 23 149088 2.26 566 Max

1.57 393 Min

1.88 471 Mean

3 12 45432 2.10 698 Max

1.67 556 Min

1.95 651 Mean

All 3080 54724339 3.00 698 Max

1.06 157 Min

51 Including the cover bell, if any.

Type 2 Simulator – Technical Reference Guide 1.8

86

Sensor Pulse Duration

The following table shows the small pendulum period, wheel radius, estimated wheel rim speed and

theoretical pulse duration for each bell at Liverpool Cathedral, based on a reflector tape 25mm wide;

and the observed pulse duration measured during development by the Simulator Interface firmware

in debug mode, using infra-red detectors.

The wheel rim speed is calculated as 4πR/T, where R is the radius of the wheel, and T is the

pendulum period of the bell for small oscillations.

Table 9 – Sensor Pulse Durations – Liverpool Cathedral

Bell Period T (s) Wheel

Radius R (m)

Estimated Wheel

Rim Speed (m/s)

Theoretical

Pulse

Duration (ms)

Observed Pulse

Duration

(Range) (ms)

1 1.60 0.81 6.38 3.9 5.7 (5.6 - 6.2)

2 1.60 0.84 6.58 3.8 6.2 (6.1 - 6.3)

3 1.60 0.86 6.78 3.7 6.0 (5.9 - 6.1)

4 1.70 0.86 6.38 3.9 6.2 (6.0 - 6.3)

5 1.75 0.89 6.38 3.9 6.4 (6.3 - 7.2)

6 1.80 0.89 6.21 4.0 5.9 (5.7 - 6.2)

7 2.00 0.99 6.22 4.0 6.3 (5.8 - 6.4)

8 2.05 1.07 6.54 3.8 7.7 (7.5 - 7.8)

9 2.25 1.14 6.38 3.9 6.6 (6.4 - 6.7)

10 2.40 1.22 6.38 3.9 6.5 (6.1 - 6.7)

11 2.40 1.32 6.92 3.6 6.7 (6.5 - 6.9)

12 2.60 1.50 7.24 3.5 6.1 (6.0 - 6.3)

The effect of the “overlap” effect described in the main text on the observed pulse durations is

evident when the theoretical and observed duration figures are compared.

Similar measurements of period and wheel radius have been made on a number of other smaller

bells, and these yield similar results. This suggests that, in this regard at least, the Cathedral bells are

unexceptional, and the sensing approach adopted may be re-used elsewhere. The following table

shows the results of these investigations. No simulators are currently fitted to these bells and no

actual pulse duration measurements have been made.

Table 10 – Theoretical Sensor Pulse Durations – Other Towers

Bell Period T (s) Wheel Radius R

(m)

Estimated Wheel

Rim Speed (m/s)

Theoretical Pulse

Duration (ms)

St John the Baptist, Tuebrook

1 1.60 0.80 6.28 4.0

5 1.70 0.88 6.47 3.9

8 2.00 0.98 6.16 4.1

St Helen, Sefton

1 1.50 0.71 5.95 4.2

4 1.60 0.77 6.01 4.2

7 1.80 0.87 6.04 4.1

Type 2 Simulator – Technical Reference Guide 1.8

87

BDC-to-Strike Intervals

The following chart shows the average time differences obtained during development between the

triggering of an infra-red optical Sensor Module and a sound operated sensor for each bell at

Liverpool Cathedral. Separate average values are shown for handstroke, backstroke, and both

strokes combined. The total sample size was 93 blows.

Figure 62 – Liverpool Cathedral Odd-Struckness Chart

Type 2 Simulator – Technical Reference Guide 1.8

88

Appendix D: CLI Command Reference
The following table lists the additional CLI commands supported by the Type 2 Simulator Interface

firmware, and their functions, as of version 3.8.

Table 11 – CLI Command Reference

Command Function

? Display current settings

This command sends a detailed set of configuration and operational values to the

serial port for review.

B/b Set the de-bounce timer (1ms -> 20ms, default 2ms).

This command prompts for the value of the de-bounce time, in milliseconds. See

also command “S”.

G/g Set the guard timer (1cs -> 50cs, default 10cs).

This command prompts for the value of the guard time, in centiseconds (1cs =

10ms). See also command “S”.

E/e Enable/disable sensors.

This command prompts for the enable mask bit to be set or unset for each input

channel. This determines which channels will generate output, and can be used

for example to bypass a faulty Sensor Module. See also command “S”.

R/r Remaps Sensor Module channel numbers (1 to 16) to Simulator output signals,

following the usual conventions for bell numbers (0-90ETABCD). Can also be used

to map channels to the MBI external switch codes (WXYZ), supported by Abel

only.

S/s Save settings to EEPROM.

This command saves the value set by the “B”, “G”, “E” and “R” commands to non-

volatile memory. If Debug Mode is enabled, the Debug Mask (“M”) is also saved.

P/p Set the serial port speed.

The serial port speed may be set to 2400, 4800 or 9600bps with this command.

The new speed is stored in EEPROM immediately and an interface reset is

required to make it active. This command is provided for debugging use only, all

tested Simulator Software packages support 2400bps only.

T/t Enable test mode.

Generates several useful test patterns on the serial interface. A hardware reset is

required to exit test mode.

H/h Display CLI help text.

D Turn debug mode ON, or set debug flags.

If Debug Mode is off, this command turns it on.

If Debug Mode is on, this command prompts the user to enable or disable each

Debug Flag.

This output is intended to be accessed via a terminal emulator and is not suitable

for use by the Simulator. Debug mode should be disabled before starting the

Simulator Software Package.

d Turn debug mode OFF

The following commands are available in Debug Mode only.

Type 2 Simulator – Technical Reference Guide 1.8

89

M/m Set or unset the debug mask bits. (Debug Mode only)

This command is available only when Debug Mode is turned on, and prompts for

the debug mask bit to be set or unset for each input channel. This determines

which channels will generate debug output and can be used to reduce the volume

of debug messages when troubleshooting a specific channel or Sensor Module.

See also command “S”.

Z/z Set defaults. (Debug Mode only)

This command is available only when Debug Mode is turned on, and sets default

values for all the configurable settings. See also command “S”.

0 … 9 Print debug markers (Debug Mode only)

This command is available only when Debug Mode is turned on, and sends the

text “DEBUG MARKER N” to the serial port, where N = 0 to 9. This is useful for

identifying areas of interest in the output when logging debug output with a

terminal emulator.

L/l Display CLI debug mode help text (Debug Mode only)

Type 2 Simulator – Technical Reference Guide 1.8

90

Appendix E: Diagnostic LED Codes
The following tables list the meanings of the codes shown by the flashes of the diagnostic LED on the

Simulator Interface Module. This list is correct as of firmware v3.8.

• The LED flashes slowly when test mode is running.

The following table lists the signal codes displayed on the yellow LED of the Simulator Interface.

Table 12 – LED Signal Codes

Long Short Meaning CLI Command

N M Announces the firmware version on power-on. -

1 0 The LED gives one long flash every time the Sensor Module

connected to Channel 1 is triggered. The LED lights when the

signal from the Sensor Module is received, and extinguishes

when the corresponding guard timer expires (the length of this

flash is therefore equal to the setting of the guard timer).

The Debug Show LED debug flag enables this behaviour for all

channels for which debugging has been selected.

-

On Steady On after power-on: Port speed is not 2400bps, or a sensor

channel is disabled (Debug mode only).

-

0 1 CLI key press acknowledgement. -

1 1 MBI Protocol command 0xFD received (0xFD response is sent). -

1 2 MBI Protocol command 0xFE received (no response is sent). -

1 3 MBI Protocol delay timers (and terminator byte) received. -

2 3 De-bounce timer set. B

2 4 Guard timer set. G

2 5 Settings saved to EEPROM. S

2 6 Enabled channels set. E

2 7 Serial port speed set in EEPROM. P

2 8 Debug mode on. D

2 9 Debug mode off. d

2 10 Debug mask set. M

2 11 Channels remapped. R

3 0 Invalid character or timeout on serial interface, data discarded. -

Type 2 Simulator – Technical Reference Guide 1.8

91

Appendix F: Useful Links
Table 13 – Useful Links

Description Link

Software

GitHub Software Repository https://github.com/Simulators

Abel Simulator Software https://www.abelsim.co.uk

Beltower Simulator Software https://www.beltower.co.uk

Virtual Belfry Simulator Software https://www.belfryware.com

Hardware

JLCPCB PCBs https://jlcpcb.com

Seeed PCBs https://www.seeedstudio.com

OSH Park PCBs https://oshpark.com

David Bagley MBI, Sensors http://www.bagleybells.co.uk

Microchip Microcontrollers (formerly Atmel) https://www.microchip.com

Maxim Serial Line Drivers https://www.analog.com

Information

John Norris “When does a bell strike?” https://www.jrnorris.co.uk/strike.html

Frank King Equations of Motion of a Free Bell and Clapper https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf

Tools

Arduino Electronic Prototyping https://arduino.cc

PuTTY Free Terminal Emulator https://www.chiark.greenend.org.uk/~sgtatham/putty/

FTDI USB-Serial Adapter Drivers https://ftdichip.com/drivers/vcp-drivers/

Prolific USB-Serial Adapter Drivers https://www.prolific.com.tw/US/index.aspx

Audacity Sound Editing Package https://www.audacityteam.org

https://github.com/Simulators
https://www.abelsim.co.uk/
https://www.beltower.co.uk/
https://www.belfryware.com/
https://jlcpcb.com/
https://www.seeedstudio.com/
https://oshpark.com/
http://www.bagleybells.co.uk/
https://www.microchip.com/
https://www.analog.com/
https://www.jrnorris.co.uk/strike.html
https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf
https://arduino.cc/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://ftdichip.com/drivers/vcp-drivers/
https://www.prolific.com.tw/US/index.aspx
https://www.audacityteam.org/

Type 2 Simulator – Technical Reference Guide 1.8

92

Appendix G: A Quarter Peal of Cambridge Surprise Minor
The following chart was constructed from debug output generated by a prototype Simulator Interface during development of the Liverpool Cathedral

Simulator, and shows the relative time between blows of a sensor on the 3rd, which was being rung as the treble to a quarter peal of Cambridge Surprise

Minor of the light (24cwt) six. This output showed that triggering and detection of the Sensor Module was reliable, with no missed signals (which would

have been indicated as very high values) or spurious triggers (very low values).

Figure 63 – Quarter Peal Sensor Head Test Timings

Type 2 Simulator – Technical Reference Guide 1.8

93

Licensing & Disclaimers

Documentation
All original manuals and other documentation (including PCB layout CAD files and schematics)

released as part of the Liverpool Ringing Simulator project52 are released under the Creative

Commons Attribution-ShareAlike 4.0 International License (CC BY-SA),53 which includes the following

disclaimers:

Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor

offers the Licensed Material as-is and as-available, and makes no representations or

warranties of any kind concerning the Licensed Material, whether express, implied, statutory,

or other. This includes, without limitation, warranties of title, merchantability, fitness for a

particular purpose, non-infringement, absence of latent or other defects, accuracy, or the

presence or absence of errors, whether or not known or discoverable. Where disclaimers of

warranties are not allowed in full or in part, this disclaimer may not apply to You.

To the extent possible, in no event will the Licensor be liable to You on any legal theory

(including, without limitation, negligence) or otherwise for any direct, special, indirect,

incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages

arising out of this Public License or use of the Licensed Material, even if the Licensor has been

advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of

liability is not allowed in full or in part, this limitation may not apply to You.

Software
All original software released as part of the Liverpool Ringing Simulator project is released under the

GNU General Public Licence (GPL), Version 354, and carries the following disclaimers:

This program is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation, either version 3 of

the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

52 https://www.simulators.org.uk
53 https://creativecommons.org/licenses/by-sa/4.0/
54 https://www.gnu.org/licenses/gpl-3.0.en.html

https://www.simulators.org.uk/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/gpl-3.0.en.html

Type 2 Simulator – Technical Reference Guide 1.8

94

Acknowledgements
The Liverpool Ringing Simulator project relies extensively on work already undertaken by others,

notably David Bagley (developer of the Bagley MBI), Chris Hughes and Simon Feather (developers of

the Abel simulator software package), Derek Ballard (developer of the Beltower simulator software

package), Doug Nichols (developer of the Virtual Belfry simulator software package), and others.

Their invaluable contributions are hereby acknowledged. Sources used are referenced in the

footnotes throughout.

Assistance with aspects of the Basic Serial Splitter Module design provided the technical support

engineers at Analog Devices (formerly Maxim Integrated, Inc).

Thanks are also owed to the Ringing Masters and ringers of the following towers for their willingness

to be the crash test dummies of simulator design and testing.

• Liverpool Cathedral

• St George’s, Isle of Man

• St Mary, Chirk, Wrexham

• St John, Higham, Kent

• St Margaret, Crick, Northamptonshire

• St Mary & St Peter, Lois Weedon, Northamptonshire

