Type 2 Liverpool

Ri

lator

1mu

S

nging

06 — Technical Reference Guide

N

\7/
. .

— g

=
o
o =
a »

LS

GIOI0)

©

.
\
\

ww 0070°08

Dﬁr

IPOWER _BOARD)

[@@EE Fl @@eE

\
:

(1 O
<o

3=
©
o
@
o
o
g
@
5
=

®

o~
©
as
=l
e
56
S
No
52
nE
°@
o
a3
o3
=
S

Vv

80.0100 mm

Author: Andrew Instone-Cowie
Date: 09 July 2025

Version: 1.8

Type 2 Simulator — Technical Reference Guide 1.8

Contents
TaTo [N Qo) B S T o YUt 5
TaTe [N o] B -1 o] L= S SRUUUPPNE 7
DOCUMENT HiSTONY ittt e ettt e e e ettt et e e e s e st beeeee e e s e s ansebaeeeeeesesannsesaaeeesssnsannnenes 8
o= o ol TP U PP PPPTPOPORE 9
AN T o TV 4 oY o PP 9
DOCUMENTATION IMIAP 1ttt ettt e e e e e e sttt e e e e e s saasreeeeeeesesanseseeeeeeesssannnenen 10
Y o YoYU N o 1 U 1o [P 11
Typical Type 2 Simulator INStAllationsccveeiieciiie e e 12
2 T (ol @eT o T ={ U = [o PP 12
SECONA PCIMOTUIE ...ttt st s sr e sresre 13
Basic Serial SPlItter MOTUIEcooviieiee et e e st s te e s saee e sreeesanes 14
SIMUIGLOT OVEIVIEW ..eiieiiiiiiie et esieectee st e sttt e s e e e sbte e st e e etee e s s teesbeeesaseessteeeseeeanseeesteessseesseeesssensn 15
Bell SENSING MELNOMS....cciiiiiiiei it e e e s e e e et e e e esabee e e esabeee s esnbaeeesnnsenas 15
Y= R o Tl I o 1T PP TPPPPPPPPPPPTPRS 15
Y TaY e LRV DTV F- B I =7 == U 16
[DIUE | B g Ted=d =T PSP 16
Yo LT I T4 PSPPIt 17
Simulator Interface Module HardWarec.cooiiiiiiiiiiienieeeie ettt et sbe e e saree s 19
OVEIVIBW ...ttt ettt ettt e et e e ettt e e e e e e e ba ettt e e e e e e e anbe e et e e e e e e e nnbeeeeeeeeeeaannnreeeeeeeeeeannnreneneeas 19
[1o ANV T T 1 o LSRR 19
(o Lo NV Tl [o =T] o1 £ USRS 19
MiICroCONTIOlEr HAardWarecoouiiiiieeiie ettt et ettt e st e e sabe e sbe e s sateesabaeesanes 20
SEIIAI LINE DIIVET ettt ettt ettt ettt ettt s e sttt e sabe e s bt e sbte e sabeesbbeesabeesabeeesabeesasaessaeasaseeanns 20
Microcontroller CoNfigUIatioNccoiciiiii i e e s e rbae e e e reeas 21
IMIICFOCONTIOIIEE 1/O PINS ettt ettt ettt ettt e e e e e e e e e et eeeessesaeseateeeesssasassrereeeeesssasansreeenees 21
Y/ ITolgoYoleY X d fol 1T ol SV Y Y=Y] o =& SR 22
0NN YT T o o | Y U UUPRN 23
Typical CUrrent REQUITEMENTSvviiieiiiie i ciiee ettt e et e e etr e e e s str e e e e atr e e e esataeeeesntaeeeessaeeesnnsaneeans 23
Microcontroller Package RatiNgSceeccuieieeiiiieccciiie ettt see e e e e e s e e e e e nba e e e enreeas 23
Aol L =Y e{cl =T U - | o 1 PR 23
(0] o] [V o1 L =T =T B T o] o U EPPROE 23
L L= BT o = o [o N 24
Hardware CompPatibilityceeiioieciiieiie e e e e e e e e e e e rr e e e e e e e e e nnreaaeeeaeeeanns 25
Basic Serial Splitter Module HardWarecooouiiiiieiiiie ettt stre e s e e e s saaree e 26
OVEIVIBW ...ttt ettt ettt e ettt e e e e s e bbbttt e e e e e e e b b et e e e e e e e s b e s eeeeesesaaansbaeeeeeessesannnreeeeeeas 26

Type 2 Simulator — Technical Reference Guide 1.8

SEIIAI LINE DIIVEIS. .ceutiettiiite ettt ettt ettt ettt e s bt s he e st et e bt e s bt e s aeesaeesab e e bt e bt e beenbeesneesaeeennean 26
01 B B LT = { o EO P PUPPPPPTTPPRE 26
o1 0T oo VPSSP 26
DOWNSEIEamM Data..ccciiiiiiiiiiiiii e e 27
Fan-0ut CalCUIRtION .ec..eiiieiee ettt et et s e e sab e s b e s bt e e sbeeennees 28
0o I u g =E 10 g D | - L PPPPPTPPTRE 29
TranSMItLEr DISADIINGcoi i e e e e e e e b e e e e rabae e e eabaee e e nsaeeeeas 30
CIrCUIT PrOtECTION .. e s re e e s e 32
AV S OIN] o T o) il o o =T ot o] o [PPSR PSPPI 32
o] T YA o) =T ot o o PSP 32
Transient VOItage SUPPIESSIONeiiiciiie ettt et e ree e e e etee e e e eabe e e e e bae e e eenbaee e eenteeeeennrenas 33
UNi-Directional TVS DIOTESueeveeiieiiieiitenite ettt ettt sttt sb e sbe e see e st e sseebeesbeesaeesane e 34
Bi-Directional TVS DIOTES. ...ccouiiiiiiiiiieeeiee ettt ettt sttt et st esbe e e sabeesabeessnbeesabeeesanes 36
LEAKAEE CUITENT ISSUBS ...vviiiiiiiieeeiieie e ecitee ettt e e ettt e e s rae e e et e e e e st bee e e sabbaeeesnsbaeeesnteaessnbeeesennseens 37
(0o] o [=Tot o] gl 10 Bl O 1T £ PP SRR PSRRPP 39
MUltiple DeVICE CONVENTIONSviiieeciiee ettt ettt e et e e et e e e e ettt e e e e st e e e e eeabaeeeeeabeeeeesabeeeeennraeaeennsenas 39
SENSOr MOAUIE CONNECEON .. .eiiiieiieieeeete ettt ettt et e s bt st st st et e e be e bt e s beesaeeeaeeeneean 40
Simulator Interface Module SENSOr CONNECTONccceirierieriirieee ettt 41
Simulator Interface Module POWer/Data CONNECTON......c.uuiiiiiurieieirieeeeiireeeeeireeeesrreeessaaeeessaveeesas 42
Power Module POWEr/Data CONNECLONcueveiieeieeeieieeeeeeetreeeesitteeessetteesssitaeesssbaeessssaseessssbaessssraeas 43
SecoNd PC IMOAUIE CONNECELON ...cutiiiiiiieeite ettt ettt ettt ettt et st sttt e bt e s beesaeeeaeeeneean 44
Basic Serial Splitter Module CONNECLONcoiiiiiee et et e e e e e rae e e e areeas 45
DBO Serial CONNECLOIS. .. .eiiuiietietieeite ettt ettt ettt et et e s bt e sat e st e s abe e be e bt e sbeesseesabeeabeenbeesbeesaeenas 46
DTES & DCES ... eiitietieieeeiee ettt ettt ettt sttt et ettt sae e st st e bt e bt e b e e s beesbeesaeeeaneeneenbeesneesnnenas 46
POWET MOAUIE.......coiiieiieece ettt et et e b e b e e sneesane e 47
SECONA PCIMOTUIE ...ttt st sttt b e sbe e saaesan e s e e neenee 47
Basic Serial SPIEEr MOGUIEeevee e e e e e e e e e e e e e e e nnnraeeeee s 48
Simulator Interface Module FITMWAIEcouiiiiiiiiieeetee ettt sttt s s 49
SENSOr CharaCeriStiCS . ..ceiueeiutiriieieeie ettt ettt sttt re e s b e smeesaeeeanees 49
FIFMWArE DESIZN cceiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeseeeeeteeeteretetetetereteseseseseeeseeeeeseseeeeeeeeeeeseeeseeeeeeenee 50
INEErrUPt DrIVEN VS POIIING ..ttt ettt e e e ee e e e abe e e e s aba e e e eabee e e enreeas 50
State Maching OPEIratioN.......cccciiiiiiie e ree e e e e e e e et r e e e e e e e e eesnnteaaeeeeaeennns 51
LI L=T 2T =TRSO 53
Y=l a R oD I=R = 1o VT o (ol 1o - ST PTPRPPPTPRS 53
Debugging & TiMING FEATUIES....ccccuviiieeiiee ettt et e e e sre e e s s tae e e e e abee e e sabaeeeenbaeesenarenas 54

Type 2 Simulator — Technical Reference Guide 1.8

Serial Input & Command LiNe INTEI aCe.......cciiciiiie ettt 56
Y= oI T T =1 1 =Y A DI ET=Y][I PR 57
IMEMOIY FOOTPIINT...ceiiiiiiiiieeeee ettt e e e e ettt e e e e s e s bbbt e e e e e s sssanbeeeeeeeeesssnnraeeeeens 57
V1= oL E PP 58
Inter-Blow Interval REQUIFEMENTSciiiiiiiieiiie ettt e e s s e e s e e s s e e e s sareeas 58
Inter-Row INterval REQUIFEMENTScciiciiiiieeciiee ettt e e e s e e e e e abe e e e e abee e e enrae e s enreeas 59
SENSON PUISE DUFATION ...ttt ettt ettt sb e sbe e st st e b e et e sbe e saeesanesabeeneenes 59
POteNtial ProbIEmMIS. ... ettt s st e she e e 61
VI =Te Y =T a Yo T F={ - | PSP 61
[BIU o] [To 1 d=Te INY= g o Ty F=d T | £ SR SPR 61
Variable Odd-STrUCKNESSccouviiiiiiiieeeee ettt sttt e e s e s bt e e st e e sbeeesabee s 62

I =T o VoL N 63
Software Development & CompPatibilitycccveiieciiiiicce e 66
Development ENVIFONMENT.......coii it e e s e e e s abee e e s nbee e e ssbeaessnareeas 66
Source Code AVailability.......ueiiiciiii e e e e errae e e enes 66
Simulator Software Compatibility........cooivciiiiiiiie e 66
Uy o R =T o o1 I Xe Fo o1 <] R 67
DFIVEE INSTAIIATION. ¢ ettt b e bt e bt st e e be et e e sbeesaeesaeenas 68
DIVEr VEITICATION ...t s e e e e sane e 70
COM Port RECONTIGUIAtIONuviiii ittt e e e e e e e be e e s e eabae e e eeareeas 73
Interconnecting Type 1 & TYPe 2 SIMUIGLOTS...cccuiiiiieiiie et re e e saree e 77
(00T 0] o X=X o 11 L1 YU 77
Type 1 —Type 2 INterface AdaPLer........ee ittt tee e e eabae e e e eabae e e enraeas 77
Yol o<1 T | A oSO RSVR PP PP PP 79
Tala=Y g = ol Vo T o Yl o 1 2 PSP 80
Parts LiST..uiiiiiiiiiiiiiiiii it 81
Interface Adaper CabliNgo ittt e e e et e e e be e e e e e tae e e e e baeaeeenranas 81
Type 1 Interface Wiring Modificationc..ooiiciiiiiiiiie e et 82
Yo 01T Lo Lol TSR 83
Appendix A: MBI Protocol DESCIIPLION ...cc.uviiiiiiiec ettt e e see e s ebee e e s e e e e e e 83
Appendix B: MBI Protocol COMMaANAS......cuuiieiiiiieeeiiieeeeiieeeesiieeeessiveeeesivee e essvaeessnbaeessnnsaeessnnsenas 84
ApPPENdixX C: IMELIICS TaDIES...ci ittt e e e e e e e e e e e e e bare e e e e e e e e e nsasaeeeeaeeesnnsnnns 85
Inter-Blow & INter-ROW INtEIVAlc...ciiiiiie e e s 85
SENSON PUISE DUFATION ..ottt ettt st et e st e sbe e saeesanesar e e b e nes 86
BDC-TO-STrKE INEEIVAIS.....eiitieeeee et sttt e e e 87

Type 2 Simulator — Technical Reference Guide 1.8

Appendix D: CLI COmMMaNnd REFEIENCEcc.uvviieciee et et e e e 88
Appendix E: DIagnoSstiC LED COUES.......uuiiiiiiieiciiie ettt e et eeivee e e aaee e e eavae e e enbae e e e nraeeeennanas 90
APPENdiX F: USEFUI LINKS c..eviiiiiiiee ettt e e e e s e e s abe e e e s e e e s areeas 91
Appendix G: A Quarter Peal of Cambridge Surprise MinNOrcccueveeeiiieiiiiiiie e 92
Lol o oY N B T ol - 10 0 U= TP 93
DOCUMENTATION ...eviiiiiiiiii it 93
SO EWAIE .ttt b e sttt e b e e h e h e s ae e st e e e e bt e b e e beesneeeareeneeen 93
ACKNOWIEAGEMENTS. ...eiiiiiiiiee ettt e st e e e sttt e s sbteeessbtaeessabteeessseaeesssaeeessnseneessses 94

Index of Figures

Figure 1 — DocUMENTAtioON IMIAP c.ooueiiiiiieiie ettt ettt e e e e s s s are e e e e e e e s ssaabebaeeeeeesesnnnnrnes 10
Figure 2 — Simulator General ArrangemMENT.......ccuuiiieiiiie et e e e e e e estr e e e s eara e e e ssnbreeeenaneeeeens 12
Figure 3 —Second PC Module General Arrangementccuvieeeciieieeiiieeeecieee e e e e ecree e e esrre e e esnreee e 13
Figure 4 — Basic Serial Splitter Modules General Arrangement.........cccueeeveviveeeeiiieeesiieeeessireeesseneeeens 14
Figure 5 — Dual Triggers — Backstroke Strike POINTcoocciiieieciiiieecciee e e 16
Figure 6 — Dual Triggers — Handstroke Strike POiNtcooociiiiiiiiiie e 16
Figure 7 — Single Trigger — Backstroke Strike POiNt.........coiiciiieiiiiiii e 17
Figure 8 — Single Trigger — Handstroke Strike POiNt..........cccouiiieiiiiic et 17
Figure 9 — Basic Serial Splitter Downstream Data FIOWcoovciiiiiiiiiiiiciiee e 27
Figure 10 — Basic Serial Splitter Upstream Data FIOWccuueiiiiiiiiiiiiieee e e sivee e 29
Figure 11 — Basic Serial Splitter Transmitter CONTrol.........cccveeieiiiiieeciee et 30
Figure 12 — Polarity Protection — COITECEiiiiuiiieiciiie ettt essaba e e e s saaaeeeeas 32
Figure 13 — Polarity Protection — REVEISEd.......cccuviiiiiiiiiiciiie ettt stre e s saaae e e e sare e e 33
Figure 14 — TVS Diode CharacteriStiC CUMVESueviieiiiiciiieiieee e e eeccitte e e e e e e e esrareeee s e e s e ssnsaseeeeeeeseennnsenns 34
Figure 15 — UNi-DirectioNal TVS DIiOTE....cccccuiiiiiciiiieeciiee ettt ssre e et e e ssaar e e e ssata e e e ssnsaeeeenanneeaeas 35
Figure 16 — Spike Dissipation (UNi-DireCtional)cccvieeciiiiiriieiiie ettt eree et eevae e s ree e 35
Figure 17 — Bi-Directional TVS DIOTEccveiiiiiiiiieeee ettt e ettt e e e e e e et e e e e e e e s snraaee e e e e e e e ennrnnns 36
Figure 18 — Spike Dissipation (Bi-Directional)ccoccuiiiiiciiieiciiiiec e 37
Figure 19 — Leakage Current "Voltage Divider" Effect......ccoveeiiieiicciiiieccee e 38
Figure 20 — Leakage Current — Supplementary Pull-Up ReSISTOr........ccevviiiiiiciiiiiieeee et 38
Figure 21 — Sensor Module CONNECLONuviiiiiiiieeciiee ettt e e e e e e e eea e e e s entaeeesnaareeeeas 40
Figure 22 — Sensor Chain INter-CoNNECLIONccuvviieeiiiie ettt ettt e e e e s saaa e e e eraareeeeas 40

Type 2 Simulator — Technical Reference Guide 1.8

Figure 23 — Simulator Interface Module Sensor CONNECLONcuvvieeiiieeeeiiee e 41
Figure 24 — Simulator Interface 4-Gang CONNECLONuiiiiciiieiiciieeeeciree e ecree s e e ssrae e e ssreeeessereeeens 41
Figure 25 — Simulator Interface Module Power/Data CONNECLON.........cccueeevueeeieeeeiteeeereeereeeereeeevee s 42
Figure 26 — Power Module POWer/Data CONNECLONcccueeecviieiieeereeeereeecteeeeireeeeteeeetreeereeeeneeeeveeenns 43
Figure 27 — Second PC Module CONNECTONuiiiiiiiiiiiiie ettt ettt e e e s e e s e e e e ssntaeeessanneeeens 44
Figure 28 — Basic Serial Splitter CONNECLONuiiiiiiie ittt e e s srae e e s saneeeeeas 45
Figure 29 — Power Module DB9 Serial CONNECLON.......cvviieeciiieeeciiee ettt e eceee e et e e ssare e e sser e e e e sareeaeas 47
Figure 30 — Second PC Module DB9 Serial CONNECLONccccuviieiiciiiiieiieeectee e e e e e 47
Figure 31 — Basic Serial Splitter DB9 Serial CONNECLONS ...ccccuvviiiiciiiieeiiee ettt e e 48
Figure 32 — Simulator Interface Main LOOP TiMING ...cc.vveiieiiiieecciiee ettt eeeaee e e 50
Figure 33 — State Machine Transitions HUStrationccoccuviiiiciieiiccie e 51
Figure 34 — Sensor De-Bounce HHUSTratioN.........ccuuiiieciiie ettt e e e e e sanee e e 53
Figure 35 — Sensor Pulse Duration HUSTrationcccueeicciiie et 60
Figure 36 — Missed Sensor Signals HUSTration.........cocciiieiiciiie e 61
Figure 37 — Duplicated Sensor Signals HUStration...........ooccuiieeeciiiiecciee e 62
Figure 38 — Variable Odd-Struckness [HUSTrationcoeccuiieeeciiiiecceee et 63
Figure 39 — Simulator INterface LateNCYccuuvei ittt s e e saae e e 64
Figure 40 — LOZIC ANAlYSEr DECOUEuviieeeiiiieeeieee e ettt e e ettt e e ettt e e e eette e e e e ata e e e esaaseeeestaeeesansseeesnnnseeanan 65
Figure 41 — Example of a USB-t0-Serial Adapler.......cccuiiiicciiie ettt e e 67
Figure 42 — Prolific Driver INStallation.........c.ueii it rare e e 68
Figure 43 — Driver Installation COMPIELEooiiiiiie et et e e e anaeeeens 69
Figure 44 — Found New HardWare IMESSAZEuuuieeeeiiiieiriiieeeeeeeeceiittree s e e e e eserateeeesaeeessnssseeeeeeesssnnnsenns 69
Figure 45 — My Computer Context Menu (WiIindoWs XP).......ccccciieeiiieiieeeiieecieeeectee e sreeeeveeesvee s 70
Figure 46 — Computer Context Menu (WINAOWS 7)uuiieiciiieeeiiiee e ettt e et eerae e e eetr e e eenreea e 70
Figure 47 — System Properties Hardware Tab (Windows XP)cooeciiiiiiiiiie e 71
Figure 48 — System Properties Hardware Tab (WIiNdOWS 7)cccveeuieeiiieeiiiie e svee s 71
Figure 49 — Device Manager (Driver INStalled)ooocuiii ettt et 72
Figure 50 — Device Manager (Driver MISSING)c.uuiieiciiieeeiiieeeecitee e et e e eeteeeeesae e e e eetaeeesenbseeeeeaneeeaens 72
Figure 51 — Device Manager (POrt COMILA)couiiiieeiiiee e cieee ettt et e e e tre e e e sar e e e s snare e e ssntaeeesnanaeeaens 73
Figure 52 — Device Manager CONTEXE IMIENUcceviiiiiiiiiiiieieeeeeeeeeeeeeeeee e eeeeeeeseeeeseeeeseeseseseeesseeeressseseseeenes 74
(O T R 60 1\ I oo ol o o 1T o 1= 74
Figure 54 — COM Port Advanced Settings (Prolific)ccceeeciieeiiciie e 75

Type 2 Simulator — Technical Reference Guide 1.8

Figure 55 — COM Port Advanced Settings (FTDI)ccoccuiieeeciiie ettt e e e e e e e 75
Figure 56 — Device Manager (Reconfigured POrt COMS3).........cooviiiiceeeiieecieeerteeecee e sreeesvaeesvee s 76
Figure 57 - TYPE 1 - TYPE 2 AGGPLEI cneeiiieieiiiee ettt et et e s e e s st e e ssaaa e e e ssstaeeesanseeeesnaseeeeenn 77
Figure 58 - Type 1 - Type 2 Adapter Board LAYOULcoocciiieiiiiiie et e e e 80
Figure 59 - Type 1 - Type 2 AdQPLEr PCBi.......oiiiiiiieeecciiee e ciitee ettt e e st e s e stae e e ssiaae e e ssseaeeessnseeeesnnnseeaens 80
Figure 60 - Type 1 - Type 2 Adapter Cable it e e 81
Figure 61 - Type 1 Interface Connector Wiring Modificationcccccuveeeeiiiiiiciieeecceec e 82
Figure 62 — Liverpool Cathedral Odd-Struckness Chart...........ccoeueeiiieiniiiniieeieceee et 87
Figure 63 — Quarter Peal Sensor Head Test TimMIiNgS.......cuivciiiiiiiiiiieiiiieee e e e e sanee e 92
Index of Tables

Table 1 — Microcontroller I/O Pin ASSISNMENTSc.uicviiiiieieeieecteeseeereesreesteesteesteesreebeesbeesseesseessnenns 21
Table 2 — ATmega328P Fuse Settings —Board REVA tO Dceeeeviiiiieiiiieeceee et 22
Table 3 — ATmega328P Fuse Settings — Board Rev E onwardsccccccuveeeeiiieiecciieec e 22
Table 4 — TVS Diode KeY Properti€suiiiciiiiiiiiiieeeiiiee e ecitee st ee s estre e e s setee e e s saae e e ssssaeesssnsaeeesnnsneeeens 33
Table 5 —Type 1 — Type 2 Interface Adapter REQUIrEMENTSc..eeveeiiiieeeiiiee e 78
Table 6 — Type 1 — Type 2 Interface Adapter Parts LiSt.......ccceeieciieeieiiiieecciree e 81
Table 7 — MBI Protocol COMMEANGS.......cccuiiiiiiieiierieenite ettt ettt eneesneesane e 84
Table 8 — Inter-Blow & INter-ROW INTEIVAIScoiuiiiiiiiiiiieieeee ettt 85
Table 9 — Sensor Pulse Durations — Liverpool Cathedralccccuveiieiiiiiiiiieicceeccee e 86
Table 10 — Theoretical Sensor Pulse Durations — Other TOWErS.........cocceeveeiieieeneeneenieeeeseesieesee e 86
Table 11 — CLI COMMANd REFEIENCEoueieiieteeeeee ettt sttt et e b e saee e 88
I o] T A W B Y = o =Y N o Lo [T SR 90
Table 13 = USETUI LINKS....coiiiiiieiieiieese ettt st sttt sae e s st e b e sbeesaee e 91

Type 2 Simulator — Technical Reference Guide 1.8

Document History

Version | Author Date Changes

0.1 A J Instone-Cowie | 26/12/2019 | First Draft.

1.0 AJInstone-Cowie | 28/12/2019 | First Release.

1.1 A J Instone-Cowie | 02/01/2020 | Add Basic Serial Splitter hardware details, more
cabling information, logic analyser trace.

1.2 A J Instone-Cowie | 18/08/2020 | Minor update.

1.3 A J Instone-Cowie | 27/08/2021 | Add Circuit Protection, DB9 pin-outs, minor
corrections.

1.4 A J Instone-Cowie | 19/06/2024 | Update for interface firmware 3.7, MBI Protocol
OxFD command support in Abel 10.3.2, update
software versions.

Update external links.

1.5 A J Instone-Cowie | 03/03/2025 | Add Type 1 —Type 2 Interface Adapter.

1.6 A J Instone-Cowie | 07/05/2025 | Eagle to KiCad PCB design tool migration. Updated
schematics and board layouts.

1.7 AJ Instone-Cowie | 09/05/2025 | Restyled MR sensors as “Magnetic Sensors” for
consistency with Build & Installation Guide.

1.8 AJInstone-Cowie | 07/07/2025 | Debugging options changes for Firmware 3.8.

Copyright ©2019-25 Andrew Instone-Cowie.

Cover image: Type 2 Simulator Interface PCB Design.

Type 2 Simulator — Technical Reference Guide 1.8

Licence

[oNolen

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.?

Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers
the Licensed Material as-is and as-available, and makes no representations or warranties of any kind
concerning the Licensed Material, whether express, implied, statutory, or other. This includes,
without limitation, warranties of title, merchantability, fitness for a particular purpose, non-
infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

To the extent possible, in no event will the Licensor be liable to You on any legal theory (including,
without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential,
punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or
use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses,
costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this
limitation may not apply to You.

Attribution

The Creative Commons Attribution-ShareAlike (CC BY-SA) licence permits you to re-use this material
for any purpose you wish, subject to the conditions of the licence, including providing attribution of
the source.

The following is suggested as a suitable form of attribution for this document, or extracts thereof:

Type 2 Technical Reference Guide, Liverpool Ringing Simulator Project
(https://www.simulators.orqg.uk). This document is licensed under the CC BY-SA 4.0 licence
(https://creativecommons.org/licenses/by-sa/4.0/). © 2019-2025 Andrew J Instone-Cowie.

! https://creativecommons.org/licenses/by-sa/4.0/

https://www.simulators.org.uk/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Type 2 Simulator — Technical Reference Guide 1.8

Documentation Map

Liverpool Ringing Simulator Documentation Map

Getting
Started
Guide

Build &
Installation
Guide

Configuring
Beltower
Guide

Configuring
Virtual Belfry
Guide

Configuring
Abel Guide

Technical
Reference
Guide

Multi-PC

Guide

Figure 1 — Documentation Map

10

Type 2 Simulator — Technical Reference Guide 1.8

About This Guide

The Type 2 Liverpool Ringing Simulator allows sensors, attached to one or more real tower bells or
teaching dumb bells, to be connected to a computer Simulator Software Package such as Abel?,
Beltower? or Virtual Belfry*. This allows you to extend and augment the teaching and practice
opportunities in your tower.

This Technical Reference Guide contains background information on the design of the simulator
hardware and firmware, and other reference material which may be useful.

Configuration guides for the main Simulator Software Packages are available separately, as are the
detailed Build & Installation Guide and Multi-PC Guide.

Please note that this is a Build-it-Yourself project. No pre-built hardware is available.

2 https://www.abelsim.co.uk/
3 https://www.beltower.co.uk/
4 https://www.belfryware.com/

11

https://www.abelsim.co.uk/doc/welcome1.htm
https://www.beltower.co.uk/
https://www.belfryware.com/

Type 2 Simulator — Technical Reference Guide 1.8

Typical Type 2 Simulator Installations

Basic Configuration
The following diagram illustrates the general arrangement of a simulator installation using a sensor
aggregation hardware interface like the Liverpool Ringing Simulator.

Multiple Sensor Modules in the belfry, one per bell, are connected to a Simulator Interface Module.
A single data cable transmits the aggregated signals from the Simulator Interface Module to the
Simulator PC in the ringing room. The same cable feeds power from a low voltage power supply in
the ringing room, via a Power Module, back up to the Simulator Interface to power both Interface
and Sensor Modules. The Type 2 simulator supports up to 16 sensors (only 12 shown on the diagram
to save space).

In the ringing room, a PC runs a Simulator Software Package which interprets the received signals
and turns them into the simulated sound of bells.

Ringing Room ‘ Belfry
‘ @ @ Sensor
Heads

bl
=)

Simulator Data
Connection

Simulator I
Interface

Simulator PC

NN N W

Sensor
@ Heads

o u
HE-
W

Figure 2 — Simulator General Arrangement

12

Type 2 Simulator — Technical Reference Guide 1.8

Second PC Module
As an option, multiple Simulator PCs may be used concurrently, using either a Second PC Module, or
the Basic Serial Splitter Module.

A second Simulator PC can be connected via a Second PC Module. This module utilises the second
transmitter in the Simulator Interface MAX233 RS-232 serial line driver IC, and a spare core in the
Power/Data cable, to provide a separate data feed to the Second PC.

A typical configuration with a Second PC Module is illustrated in the following diagram (only a subset
of sensors are shown to save space):

Ringing Room | Belfry
|
AL

.0y I Sensor

Sub”
Sub.”

Second Heads
PC Board Simulator Data
Power Connection
Board I
Simulator
Interface
Sensor
‘ Heads

e
e

Simulator PC #1 Simulator PC #2 ‘ ! E

Figure 3 — Second PC Module General Arrangement

13

Type 2 Simulator — Technical Reference Guide 1.8

Basic Serial Splitter Module

The Basic Serial Splitter Module uses additional RS-232 receiver and line driver ICs to copy the
stream of signals from the Simulator Interface to multiple PCs. The minimum configuration of the
Basic Serial Splitter (the “Master Board”) supports up to four PCs, but this can be linked to a second
“Expander Board” which supports four more PCs.

Two Basic Serial Splitter Modules can be daisy-chained between the Power Module and the
Simulator Interface Module on RJ45 cables, supporting a maximum of 16 Simulator PCs. The
maximum configuration of two daisy-chained Basic Serial Splitters is illustrated in the following
diagram (all sensors are omitted to save space):

Ringing Room Belfry

Basic Basic
! @ Splitter \@ @‘ Splitter @/ ‘
& & & ®
= @& (& @
(& (& (& &
| | Simulator | Sin;lulator
PCs 1-8 PCs 9-16

Simulator
Interface

Simulator Data
Connection |

Figure 4 — Basic Serial Splitter Modules General Arrangement

All Simulator PCs receive a read-only copy of the same signals from the Simulator Interface. Each PC
runs its own copy of the Simulator Software Package (or even of different software packages), and
the Simulator Software on each PC is configured to filter out unwanted signals.

Any one PC connected to the Basic Serial Splitter can be used to send configuration data to the
Simulator Interface, selectable by a switch on the splitter. (If two Basic Serial Splitters are daisy-
chained together, only PCs connected to the Splitter nearest to the Power module can be used to
configure the Interface.)

14

Type 2 Simulator — Technical Reference Guide 1.8

Simulator Overview

Bell Sensing Methods

Sensor Types
Over the years a number of different approaches have been used for detecting the position of a tied
or dumb bell, and translating that position into a signal for use by a simulator.

e Mechanical switches or contacts suffer from reliability problems, including mechanical
fatigue and environmental damage (e.g. corrosion or ingress of dirt), and are not now widely
used. Mechanical switches also typically suffer from a high degree of contact “bounce”.

e Electro-Magnetic sensors, typically consisting of a glass-encapsulated reed switch attached
to the bell frame and a small magnet attached to the wheel shroud, have also been used,
but typically require very close alignment of switch and magnet. They can also suffer from
fatigue and contact bounce.

e Inductive sensors, which have a fixed detector circuit attached to the bell frame, and a wire
coil fitted to the wheel shroud, have also been used. In principle the absence of moving
parts should make these a very reliable option. However, a key component of the original
design® is no longer available, and parts for an alternative design® are described as difficult
to obtain.

e Aidan Hedley has produced a sensor design’ using a Honeywell magneto-resistive sensor,
activated by a small, powerful rare earth magnet mounted on the wheel shroud. Alan Griffin
and Derek Livsey produced a similar design using an Allegro Microsystems Hall Effect device.
The standard magnetic sensor used by the Type 2 Liverpool Ringing Simulator is derived
from these designs.

e A wireless, accelerometer-based sensor has been developed and prototyped as the Belfree
simulator. This sensor is mounted on the wheel of the bell and communicates with the
Simulator PC via a radio link. At the time of writing these not currently available®.

e Optical sensor heads using visible light typically consist of a light source, usually a fixed red
Light Emitting Diode (LED), mounted parallel to a photo-diode or photo-transistor detector,
in an enclosure attached to the bell frame; and a reflector mounted on the wheel shroud.
Visible light optical sensors are widely used, are very reliable, and this is the approach
adopted by the Bagley MBI sensor heads®. Their use can be problematic in areas with high
ambient light levels. Other designs include additional pulse-shaping or timing circuitry®°.

e Optical sensor heads using infra-red light are similar in general design, but have reduced
susceptibility to ambient visible light levels. A sensor design using a low cost commercially
available modulating infra-red detector has been developed as an alternative sensor for the
Type 2 Simulator.

5 https://www.abelsim.co.uk/doc/tbellex2.htm

6 http://www.gremlyn.plus.com/ahme/prox sen.html
7 http://www.gremlyn.plus.com/ahme/mag sen.html
8 The Belfree website is no longer active.

9 http://www.bagleybells.co.uk/sensors/sensors.htm
10 https://www.abelsim.co.uk/doc/tbellex1.htm

15

https://www.abelsim.co.uk/doc/tbellex2.htm
http://www.gremlyn.plus.com/ahme/prox_sen.html
http://www.gremlyn.plus.com/ahme/mag_sen.html
http://www.bagleybells.co.uk/sensors/sensors.htm
https://www.abelsim.co.uk/doc/tbellex1.htm

Type 2 Simulator — Technical Reference Guide 1.8

Single vs Dual Trigger

There are generally two approaches used by simulators when detecting signals from sensors:

e The dual trigger approach uses two triggers (for example, optical reflectors) on the shroud of
the wheel of each bell, one of which triggers at the moment that the bell would strike at
handstroke, the other at the moment that the bell would strike at backstroke.

e The single trigger approach uses one trigger, which triggers as the bell passes through the
bottom dead centre (BDC) of its swing. A delay is then applied (either in the Simulator
Interface or the Simulator Software Package) before the simulator triggers the simulated
sound of the bell.

The Liverpool Ringing Simulator project adopts the single trigger approach, on the grounds of
simplicity of installation and compatibility with other similar systems. This is discussed in more detail
in a later section of this guide.

Dual Triggers

The dual trigger approach uses two triggers (for example, optical reflectors or magnets) on the
shroud of the wheel of each bell, one of which triggers at the moment that the bell would strike at
handstroke, the other at the moment that the bell would strike at backstroke. The simulator triggers
the simulated sound of the bell as soon as the signal pulse is received (from the trigger travelling
past the sensor as the bell is on its way up to the balance), and then ignores the next signal pulse (as
the first trigger travels back past the sensor as the bell is on its way down), and so on.

This approach is illustrated in the following diagrams. In Figure 5 the bell is rising towards the
handstroke position, and is passing through the backstroke strike point. The backstroke trigger
passes the sensor and generates a signal to the Simulator. Figure 6 shows the opposite stroke as the
bell rises towards the backstroke position and passes through the handstroke strike point.

Backstroke Handstroke -
Trigger A Trigger A
Sensor Sensor
Figure 5 — Dual Triggers — Backstroke Strike Point Figure 6 — Dual Triggers — Handstroke Strike Point

16

Type 2 Simulator — Technical Reference Guide 1.8

The sensor is shown at the BDC position only for clarity. The sensor may be located anywhere
around the wheel, provided that the geometrical relationship between the sensor and the two
triggers is maintained.

This approach has the capacity to provide a very accurate representation of the striking of a bell, but
equally requires very accurate placement of the triggers to match the strike points of the bell in
motion. This may be difficult and time-consuming to determine.

Single Trigger

The single trigger approach uses one trigger, which triggers as the bell passes through the bottom
dead centre (BDC) of its swing. A delay is then applied (either in the Simulator Interface or the
Simulator Software Package) before the simulator triggers the simulated sound of the bell.

This approach is illustrated in the following diagrams. In Figure 7 the bell is rising towards the
handstroke position. The trigger passed the sensor at BDC, and a delay is applied so that the signal to
the Simulator is generated later, as the bell passes through the backstroke strike point. Figure 8
shows the opposite stroke as the bell rises towards the backstroke position and passes through the
handstroke strike point.

Delay Delay
Time \A A_/ Time
Sensor Sensor
Figure 7 — Single Trigger — Backstroke Strike Point Figure 8 — Single Trigger — Handstroke Strike Point

The sensor is again shown at BDC only for clarity. The sensor may be located anywhere around the
wheel, provided that the geometrical relationship between the sensor and the trigger is maintained,
the trigger being positioned directly opposite the sensor when the bell is down.

This approach is simpler to implement, and the single trigger is much easier to align accurately
against the Sensor Head with the bell down. Work by John Norris!! has shown that this approach can
provide an acceptable degree of accuracy, with any errors considered too small to be detectable to
the human ear.

11 https://www.jrnorris.co.uk/strike.html

17

https://www.jrnorris.co.uk/strike.html

Type 2 Simulator — Technical Reference Guide 1.8

The Type 2 Liverpool Ringing Simulator adopts the single trigger approach, on the grounds of
simplicity of installation, and compatibility with other similar systems.

18

Type 2 Simulator — Technical Reference Guide 1.8

Simulator Interface Module Hardware

Overview
The Simulator Interface Module hardware consists of three main functional blocks:

e A5V regulated power supply, which provides power for the interface electronics and for the
sensor.

e A digital microcontroller, which detects incoming signals from the sensors, and then sends
aggregated signals to the Simulator PC in the form of a stream of ASCII characters.

e A RS-232 serial line driver, which converts the TTL-level signals from the microcontroller to
higher voltage RS-232 signals, for transmission over longer distances to the Simulator PC.

All the components of these functional blocks are mounted on a single custom PCB. The same core
hardware (and firmware) can connect to any number of Sensors Modules from one to 16.

Hardware Options

Over recent years several low-cost electronic prototyping platforms have been brought to the
market, with a number of different architectures, and suitable for a wide range of experimental and
embedded functions. These include single board computers running feature-rich operating systems,
such as the Raspberry Pi and Beagle Board, and simpler microcontroller-based products such as the
Arduino family, PICAXE, ARM Cortex and others.

New devices and variants are released frequently.

The Arduino Uno development platform (based on the Microchip (formerly Atmel) ATmega328P
microcontroller'?) was originally selected as the prototyping platform for the Liverpool Cathedral
Simulator project, on the grounds of:

e Simplicity & low cost
e Established user base & wide community support
e Wide availability of additional prototyping peripheral hardware (“shields”)

The use of the same microcontroller family has been continued for the Type 2 Liverpool Ringing
Simulator, allowing the same well-supported and freely available tool chain to be used for code
development and deployment.

Hardware Interrupts

The choice of the ATmega328P imposes an important constraint on the firmware design for the
Simulator Interface, in that the microcontroller has limited support for hardware interrupt inputs.
This is described in more detail in a later section of this guide.

12 https://www.microchip.com/wwwproducts/en/atmega328p

19

https://www.microchip.com/wwwproducts/en/atmega328p

Type 2 Simulator — Technical Reference Guide 1.8

Microcontroller Hardware

The Simulator Interface is based on the same Microchip (formerly Atmel) ATmega328P
microcontroller as the Arduino Uno used in the first prototype interfaces. Using the same
microcontroller makes it very easy to port the Simulator Interface firmware to the new hardware.

e The Simulator Interface®® makes use of an external 8MHz resonator as a clock source.
Although this is less accurate than a crystal oscillator, it is still adequate for the purposes of
the Simulator Interface, and this reduces the overall component count and complexity of the
interface board by omitting crystal load capacitors.

e Although the Simulator Interface uses the ATmega328P microcontroller and development
tool chain, it does not use the Arduino boot loader program. The ATmega328P is
programmed via an ICSP header using a programmer (the Arduino-as-ISP method is
suggested and is described in more detail in the Build & Installation Guide.)

Serial Line Driver
e The Simulator Interface uses the Analog Devices (formerly Maxim) MAX233 RS-232 serial
line driver’*. The MAX233 has the advantage over other line driver ICs of requiring ho
external charge pump capacitors, also reducing the overall component count. It also
provides two RS-232 transmitters, simplifying support for multiple Simulator PCs.

13 From Rev E onwards.
14 https://www.analog.com/en/products/max233.html

20

https://www.analog.com/en/products/max233.html

Type 2 Simulator — Technical Reference Guide 1.8

Microcontroller Configuration

Microcontroller I/0 Pins
The following table shows the ATmega328P pin assignments for the Type 2 Simulator Interface:

Table 1 — Microcontroller 1/0 Pin Assignments

Arduino I/O Pin?® ATmega328P Function
Physical Pin
0 2 Serial Port Receive
1 3 Serial Port Transmit
2 4 Sensor #12 (T)
3 5 Sensor #10 (0)
4 6 Diagnostic LED
5 11 CRO Timing Pin (enabled in development code only)
6 12 Sensor #1
7 13 Sensor #2
8 14 Sensor #3
9 15 Sensor #4
10 16 Sensor #5
11 17 Sensor #6
12 18 Sensor #7
13 19 Sensor #8
14 (A0) 23 Sensor #9
15 (A1) 24 Sensor #11 (E)
16 (A2) 25 Sensor #13 (A)
17 (A3) 26 Sensor #14 (B)
18 (A4) 27 Sensor #15 (C)
19 (A5) 28 Sensor #16 (D)

15 Pin numbers as referenced in the Arduino programming environment.

21

Type 2 Simulator — Technical Reference Guide 1.8

Microcontroller Fuse Settings
The ATmega328P microcontroller has several configuration registers known as fuses. These are used

to control the behaviour of the microcontroller'®. Fuse values are contained in the file boards. txt

described in the section on uploading firmware below, and are only written during the burn

bootloader phase of programming.

Warning: Setting incorrect fuse values can render the microcontroller unusable or prevent further
reprogramming without specialist hardware.

The appropriate set of fuses is selected in the Arduino IDE by selecting the correct board type in the

Liverpool Ringing Simulator Boards set.

Table 2 — ATmega328P Fuse Settings — Board Rev A to D

Fuse Value Notes
Low OxE2 8MHz internal oscillator, maximum clock startup delay.
(SUTO, CKSEL3, CKSEL2, CKSELQ)
High OXDF Enable serial programming, boot reset vector disabled. (SPIEN)
Extended OxFD Brown-out detection level 1 (2.7V). (BODLEVEL1)

For more details of these fuse settings and their functions, refer to the ATmega328P data sheet, or

see the online fuse calculator at:
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=E2&HIGH=DF&EXTENDED

=FD.

Table 3 — ATmega328P Fuse Settings — Board Rev E onwards

Fuse Value Notes

Low OxCF 8MHz external resonator, maximum clock startup delay. (SUTO, SUT1)
High OXDF Enable serial programming, boot reset vector disabled. (SPIEN)
Extended OxFD Brown-out detection level 1 (2.7V). (BODLEVEL1)

For more details of these fuse settings and their functions, refer to the ATmega328P data sheet, or

see the online fuse calculator at:
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=CF&HIGH=DF&EXTENDED

=FD.

Note that unlike the Type 1 Simulator Interface, EEPROM contents are cleared on firmware load
(high fuse bit 3, EESAVE, is not set, giving OxDF instead of 0xD7). This is to be confident of having a
workable default configuration even if the interface has not yet been configured by the user.

16 Fuse tutorial: https://www.martyncurrey.com/arduino-atmega-328p-fuse-settings/

22

https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=E2&HIGH=DF&EXTENDED=FD
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=E2&HIGH=DF&EXTENDED=FD
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=CF&HIGH=DF&EXTENDED=FD
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega328p&LOW=CF&HIGH=DF&EXTENDED=FD
https://www.martyncurrey.com/arduino-atmega-328p-fuse-settings/

Type 2 Simulator — Technical Reference Guide 1.8

Power Supply

DC power is supplied to the Simulator Interface over the Power/Data Cable at a higher voltage than
required, to overcome the effects of losses due to the resistance of the Power/Data Cable. Incoming
power is fed to a conventional linear 5V regulator on the Simulator Interface PCB. An alternative to a
conventional linear regulator is described in the Build & Installation Guide, for installations with
higher current requirements.

Typical Current Requirements
The Simulator Interface Module and Sensor Modules all operate at 5V DC.

e The Simulator Interface current consumption is approximately 25maA.

e The current consumption of the standard Magnetic Sensor Modules is approximately 8mA
per module in the triggered state (i.e. with the LED lit).

e The current consumption of the Infra-Red Sensor Modules is approximately 25mA per
module in the triggered state.

e The total current requirement with a full set of 16 Magnetic Sensor Modules is therefore
approximately 153maA.

e The total current requirement with a full set of 16 Infra-Red Sensor Modules is
approximately 425maA.

These values are well below the 1A maximum current rating of the specified 5V voltage regulator,
however heatsinking may be required for configurations with many Infra-Red Sensor Modules, as
noted below.

Microcontroller Package Ratings

The ATmega328P microcontroller has a source/sink current limit of 40mA per pin, and a total device
package current limit of 200mA. The majority of the microcontroller pins will be connected to sensor
inputs, and these were measured to sink approximately 130 pA each when triggered, so neither of
the microcontroller limits should present a problem. Other pins drive the diagnostic LED and the RS-
232 line driver, and in total these do not draw more than a few milliamps.

Voltage Regulator

The Simulator Interface uses a standard linear voltage regulator to provide a regulated 5V DC supply.
The voltage regulator requires at least 7V DC at its input pin in order to maintain a stable 5V DC
output. The voltage regulator is fed via a polarity protection diode, which drops approximately 0.7V,
giving a minimum input voltage requirement of 7.7V at the Simulator Interface input.

Cable Voltage Drop
CATS5 Ethernet cable is specified!” as having a DC loop resistance of <0.188 Q/m.

The effective resistance of the power cores of a 25m cable (considering that the simulator
configuration doubles up both power and ground cores) is therefore estimated to be approximately
2.350. At a peak supply current of 425mA, this would result in a voltage drop of approximately 1V
along the 25m cable.

17 https://www.macinstallations.com/cat-5-cabling-explained/

23

https://www.macinstallations.com/cat-5-cabling-explained/

Type 2 Simulator — Technical Reference Guide 1.8

Taking into account the voltage drop across the polarity protection diode, the theoretical minimum
supply voltage to the cable is approximately 8.7V in order for the voltage regulator to maintain a
stable 5V DC output. In practice a multi-voltage DC plug-in power supply unit rated at 1000mA with
the output set to 9V has been found adequate for a cable run up to 25m.

For exceptionally long cable runs a 12V DC supply could be used, but there is no advantage to doing
so for shorter runs, and the heat dissipation of the voltage regulator will increase, with a
requirement for additional heatsinking.

Heat Dissipation

At peak load, with a full complement of 16 Infra-Red Sensor Modules, the voltage regulator would
be dissipating a minimum? of approximately 0.85W. The power dissipation will be higher with
shorter cable runs or a higher supply voltage. The data sheet for the voltage regulator indicates that
this will require a heatsink.

An alternative approach, described in the Build & Installation Guide, is to replace the linear voltage
regulator with a switched buck regulator. These are available as drop-in replacements for the
standard TO-220 regulator package and eliminate the need for a heatsink altogether.

18 Assuming the minimum required input voltage of 7V at the voltage regulator.

24

Type 2 Simulator — Technical Reference Guide 1.8

Hardware Compatibility

The Type 2 Liverpool Ringing Simulator has been designed to be compatible, as far as possible, with
existing simulator hardware, to allow operation with unmodified Simulator Software Packages which
support the MBI protocol. This is described in more detail in later section of this guide. The
following hardware design decisions have been made to maximise compatibility and interoperability:

e The Simulator Data Connection uses a RS-232 data link to the Simulator, running at 2400
bps, 8 data bits, 1 stop bit, no parity.

e The sensor inputs of the Simulator Interface operate at 5V DC TTL levels. Under normal (un-
triggered) conditions the interface expects that the Sensor Head output pin will be HIGH
(nominally +5V), and that when triggered the Sensor Head output pin will drop LOW
(nominally OV) for the duration of the trigger pulse®.

Unlike the Type 1 design, the simplified cabling used by the Type 2 Simulator Interface means that
the sensor inputs do not use the same 4-pin GX16-4 panel mount connectors as the Bagley MBI.
Integrating existing sensors into the Type 2 Simulator may be achieved using the Generic Sensor
module described in the Build & Installation Guide.

19 Sensors which operate with reverse logic (normally LOW, going HIGH when triggered) may be
accommodated by amending the firmware to look for LOW to HIGH transitions.

25

Type 2 Simulator — Technical Reference Guide 1.8

Basic Serial Splitter Module Hardware

Overview

The Basic Serial Splitter Module replicates data sent from the Simulator Interface Module
(“downstream data”) to up to 8 Simulator PCs. All PCs receive copies of the same data,
simultaneously. For example, typically this allows more than one ringer with headphones to use the
simulator with a simulated band at the same time, the Simulator Software Package on each ringer’s
PC responding only to the Sensor on “their” tower bell.

The Basic Serial Splitter Module also allows any one Simulator PC to send data to the Simulator
Interface Module (“upstream data”) for configuration purposes. The active Simulator PC is selected
using a DIP switch on the Basic Serial Splitter Module.

Finally, it is possible to daisy-chain two Basic Serial Splitters to allow the connection of up to 16
Simulator PCs. When two Basic Serial Splitters are daisy-chained together, only PCs on the more
downstream Splitter Module can be used to send configuration data to the Simulator Interface
Module.

The Basic Serial Splitter Module is a passive device and has no microcontroller or firmware.

Serial Line Drivers

The Basic Serial Splitter uses two different Serial Line Driver ICs. Data to and from the upstream
Simulator Interface Module is handled by an Analog Devices (formerly Maxim) MAX3323, and data
to and from the Simulator PCs is handled by an Analog Devices (formerly Maxim) MAX208.

e The MAX3323 has been selected to handle the interface data because it can disable its
transmitter and receiver in response to additional control pins (only the ability to disable the
transmitter is used in the Basic Serial Splitter Module), and because its receiver has the
capacity to fan out to multiple transmitters (calculation below).

e The MAX208 consists of 4 pairs of RS-232 transmitters and receivers in a single package. It
can therefore handle signals to and from up to 4 PCs per IC. Note that no RS-232 control
lines are connected. A second MAX208 on the expander board supports a further 4 PCs.

PCB Design

The Basic Serial Splitter Module has been designed such that a common PCB can be assembled
either as a Master Board with connections to the Simulator Interface Module, Power Module, and
up to 4 PCs; or as an Expander Board, which connects to the Master Board and up 4 further PCs.

The Expander Board requires only a subset of the components normally fitted to a Master Board.
This is detailed in the assembly instructions in the Multi-PC Guide.

Power Supply

The Basic Serial Splitter derives its power from the Power Module, using the power lines looped
through on the RJ45 connectors. Although the Basic Serial Splitter current requirements are very
low, a large TO-220 voltage regulator is used to handle the additional heat dissipation if the
installation requires a 12V supply instead of the usual 9V.

26

Type 2 Simulator — Technical Reference Guide 1.8

Downstream Data
The downstream data flow is illustrated in the following diagram:

MAX3323 MAX208
Simulator 3 < o _ 9 Simulator
Interface 75 Rati 10 | - B 5 — PC#1
5kQ
Simulator
» = - >
- PC #2
Simulator
» —,—
i - PC#3
Simulator
» - e
=~ PC #4
Master
Board
Expander
Board MAX208
Simulator
»] —
= PC #5
Simulator
o =l 1 >
. PC #6
Simulator
o = B
== PC #7
Simulator
- :
Lt > pc#s

Figure 9 — Basic Serial Splitter Downstream Data Flow

Data from the Simulator Interface Module is received at RS-232 line levels by the receiver on the
MAX3323, which inverts and level shifts it to TTL levels. The data is then fanned out to up to 8
MAX208 transmitters, which invert and level shift it back to RS-232 line levels for the connected
Simulator PCs.

27

Type 2 Simulator — Technical Reference Guide 1.8

Fan-Out Calculation
The MAX3323 can operate on supply voltages between 3.0V and 5.5V. In the Basic Serial Splitter
Module design the supply voltage Vcc is nominally 5.0V, and the V| logic supply pin is tied to Vcc.

The choice of Vcc = 5.0V is driven by the MAX208, which requires a supply voltage of 5.0V.
MAX3323 RS-232 receiver output specification:
Output Voltage Low Vo:

o |our=1.6mA, V. > 1.8V, guarantees Vo, < 0.4V

o |out=1mA, V. £ 1.8V, guarantees Vo < 0.4V

e Hence at V| = Vcc = 5.0V, the receiver output can sink up to 1.6mA while maintaining Vo,
below 0.4V.

Output Voltage High Vonu:

o lour=-1mA, V. > 1.8V, guarantees Vou > V. - 0.4V

® lour =-500pA, V. £1.8V, guarantees Vou > V. - 0.4V

e Hence at V| = Ve = 5.0V, the receiver output can source up to 1mA while maintaining Vou
above 4.6V.

MAX208 RS-232 transmitter input specification:
Input Voltage Low:

e Input Logic Threshold Low < 0.8V

e Input internal pull-up resistor = 400kQ

o Input current therefore approximately 12.5uA per transmitter with transmitter input held
low.

o One MAX3323 receiver will drive 8 x MAX208 transmitters in a fully populated Basic Serial
Splitter Module (master board + expander board).

e 12.5pA x 8 transmitters = 100pA

e 100pA is less than the maximum 1.6mA which the MAX3323E receiver output can sink.

e Hence one MAX3323 RS-232 receiver can maintain Vo, < 0.4V, which is less than the 0.8V
MAX208 RS-232 transmitter logic low threshold, while driving the required 8 x MAX208 RS-
232 transmitters.

Input Voltage High:

e Input Logic Threshold High > 2.0V

e The MAX208 transmitter input pull-up resistor ensures logic high even if the input is open
circuit. No external current source is required.

e Hence one MAX3323 RS-232 receiver output can maintain Vou >4.6V, which is greater than
the 2.0V MAX208 RS-232 transmitter logic high threshold, while driving the required 8 x
MAX208 RS-232 transmitters.

28

Type 2 Simulator — Technical Reference Guide 1.8

Upstream Data
The upstream data flow is illustrated in the following diagram:

MAX3323 MAX208

Simulator % - el > | wx o | @™ Simulator

Interface % 3 e T S I PC #1
L~ x Simulator

o PC #2
L~ - Simulator

= - PC #3
- =2 Simulator

e B PC #4

Master
Board
Expander
Board MAX208

s ¢ Simulator

= PC #5
L~ x Simulator

= PC #6
L~ x Simulator

= < PC #7
7 . Simulator

x PC #8

Figure 10 — Basic Serial Splitter Upstream Data Flow

Data from a Simulator PC is received at RS-232 line levels by a receiver on a MAX208, which inverts
and level shifts it to TTL levels. The data from one PC (Simulator PC #1 in the diagram above) is then
connected via the DIP switch to the MAX3323 transmitter, which inverts and level shifts it back to
RS-232 line levels for the Simulator Interface Module.

29

Type 2 Simulator — Technical Reference Guide 1.8

It is important to note that only one MAX208 receiver should be connected at any time to the
MAX3323 transmitter.

e The MAX208 ensures that the outputs of any receivers not connected to an RS-232 source
are held at logic 1 level (logic 1 is high voltage — approximately Vcc — on the TTL side).

e Connecting more than one receiver at the same time will result in an effective short circuit
from Vcc to ground during any data transmission from a connected PC, as the other receiver
tries to pull its output low. This may damage the MAX208.

Transmitter Disabling
Two Basic Serial Splitter Modules may be daisy-chained to support a maximum of 16 Simulator PCs.

e Where a single Basic Serial Splitter Module is used, only one Simulator PC can be used to
send configuration data to the Simulator Interface Module. The active PC is selected using
the 8-position DIP switch on the Basic Serial Splitter Module.

e Where two Basic Serial Splitter Modules are daisy-chained together, only one module can be
used to send configuration data to the Simulator Interface Module (the active PC on that
module being selected with the DIP switch, as above).

e Only the RS-232 transmitter on the downstream of the two modules is enabled; the
transmitter on the upstream module is disabled.

e The disabling of the upstream transmitter is automatic and cannot be configured.

The circuit controlling the transmitter disabling function is illustrated in the following diagram:

UBASIC SERIALSPLITTER +sv i | BASIC SERIAL SPLITTER 5V
| (Downstream) A : : (Upstream)
H = -‘_/. ‘ P -‘\7_/. /
O C : : O O
s 7 ' ' s -
\,_) . H ! o)
o0 %10"9 ; i O 0O 10k
o O i § o O
Q Q TXENABLE é 3 C-:I O TXENABLE
T10UT p= : ' Ti0UT =
o H ' -
: o O : QO O
i POWER MAX3323 i ! POWER MAX3323 3
{ BOARD INTERFACE | | BOARD INTERFACE |
@ | (4 : ‘ (4 4
® (8 (&)
GND

Figure 11 — Basic Serial Splitter Transmitter Control

30

Type 2 Simulator — Technical Reference Guide 1.8

The transmitter disabling function operates as follows:

e The Basic Serial Splitter Modules uses the MAX3323 RS-232 serial line driver IC, which has
the capability to disable the serial transmitter via a control pin, making the RS-232 level
transmit TIOUT? pin passive and high impedance?.

e When a single Basic Serial Splitter Module is used, the TXENABLE pin is held high via a 10kQ
pull-up resistor.

e The TXENABLE pin is also connected to pin 8 of the Power Board connector. This is pin is not
connected on the Power Module, so the TXENABLE pin is still held high. This enables the RS-
232 transmitter.

e Pin 8 on the Interface connector is connected to ground (0V). This pin is not used on the
Simulator Interface Module, so this has no effect.

e When a second Basic Serial Splitter is connected, pin 8 on the Power Board connector of the
upstream module is connected to the Interface connector of the downstream interface. This
has the effect of pulling low the TXENABLE pin of the upstream module’s MAX3323.

e This disables the upstream MAX3323’s RS-232 transmitter and makes the TLOUT transmit
pin high impedance. PCs connected to the upstream module cannot transmit data to the
Simulator Interface Module, regardless of the DIP switch setting.

e The TXENABLE pin of the downstream module’s MAX3323 is still held high by its pull-up
resistor. As above, this pin is connected to pin 8 of the Power Board connector, but this is
not connected on the Power Module, so the TXENABLE pin is still held high. The downstream
module’s RS-232 transmitter remains enabled.

20 pin names as defined in the MAX3323 data sheet.
21 The RS-232 receiver can also be disabled, but this functionality is not used in the Basic Serial Splitter Module.

31

Type 2 Simulator — Technical Reference Guide 1.8

Circuit Protection

Over-Current Protection
Primary over-current protection is provided by the 800mA fuse fitted to the Power Module.

Secondary over-current protection is provided by the selected LM340T-5.0 voltage regulator?? or
alternative Traco Power TSR 1-2450 switched buck regulator?. Both devices have internal short-
circuit protection and thermal shutdown features.

The LM340T-5.0 has internal thermal overload protection, and an internal short-circuit current limit
of 2.1A.

The short-circuit current limit of the Traco Power TSR 1-2450 is not specified in the data sheet, but
the maximum input current is given as 1000mA (1A).

Polarity Protection

The use of polarised connectors on all modules of the Liverpool Ringing Simulator minimises the
possibilities for reversed polarity connections between modules. However, many general-purpose
plug-in power supply units are provided with a selection of non-polarised reversible connector tips,
with the consequent risk of inadvertently connecting the power supply with the polarity reversed.

The Simulator Interface Module and the Basic Serial Splitter Module are therefore provided with a
reverse polarity protection diode, connected before the voltage regulator or other polarity sensitive
devices.

The diode specified is a 1N4001 device**, which has a maximum peak forward current rating of 1A,
and a peak inverse voltage rating of 50V, which is adequate for a fully specified simulator.

With correct power supply polarity, the diode is forward biased and conducts, allowing current to
flow to the rest of the Interface or Splitter Module. This is illustrated in the following diagram:

Power Simulator
Supply Interface
Diode

+9V N

GND

Figure 12 — Polarity Protection — Correct

2 https://www.ti.com/lit/gpn/LM340
3 https://www.tracopower.com/sites/default/files/products/datasheets/tsr1 datasheet.pdf
24 https://www.vishay.com/docs/88503/1n4001.pdf

32

https://www.ti.com/lit/gpn/LM340
https://www.tracopower.com/sites/default/files/products/datasheets/tsr1_datasheet.pdf
https://www.vishay.com/docs/88503/1n4001.pdf

Type 2 Simulator — Technical Reference Guide 1.8

If the power supply is connected with the polarity reversed, the diode is reverse biased and does not
allow current to flow, thus protecting the remainder of the electronics. The peak inverse voltage
rating of the diode provides protection up to 50V. Reverse polarity connection is illustrated in the
following diagram:

Power Simulator
Supply Interface
Diode
GND ’I
+9Vv
REVERSED

Figure 13 — Polarity Protection — Reversed

Transient Voltage Suppression

The Liverpool Ringing Simulator modules are fitted with Transient Voltage Suppression (TVS) diodes
to provide a degree of protection against induced over-voltage spikes on the power supply and
signal lines, for example resulting from local lightning strikes or electrostatic discharge events.

Uni-directional TVS diodes are used on logic and power supply lines. Bi-directional TVS diodes are
used on the RS-232 signal lines.

The key properties of the diodes specified are listed in the following table, taken from the device
data sheet:®

Table 4 - TVS Diode Key Properties

Part Number Reverse Breakdown Maximum Maximum Maximum
Standoff Voltage (Ver) Clamping Peak Pulse | Reverse
Voltage (V) Voltage (Vc) Current Leakage
(Iep) (A) Current (lr @
Ve) (HA)
SA5.0A 5.0 6.40-7.00 9.2 55.4 600
SA12A 12.0 13.30-14.70 19.9 25.6 1
SA15CA* 15.0 16.70-18.50 24.4 20.9 1

(* Bi-directional)

TVS diodes will not provide protection against direct lightning strikes. Disconnecting the Simulator
Interface cable from the Power Module is recommended when the simulator is not in use.

25

https://www.littelfuse.com/~/media/electronics/datasheets/tvs diodes/littelfuse tvs diode sa datasheet.pd

f.pdf

33

https://www.littelfuse.com/~/media/electronics/datasheets/tvs_diodes/littelfuse_tvs_diode_sa_datasheet.pdf.pdf
https://www.littelfuse.com/~/media/electronics/datasheets/tvs_diodes/littelfuse_tvs_diode_sa_datasheet.pdf.pdf

Type 2 Simulator — Technical Reference Guide 1.8

The differences between the behaviour of uni-directional and bi-directional TVS diodes can be seen

in the following graphs:®

Uni-directional -
A v Bi-directional
| r 3
(- — — — — f
fi f!
I il
|I | I.' I
.'II] L
|
Ve VerWR i Ir |
- ——= = JIrRVF d We VER VR RE — — = & o .
/ i V= — = o ||R VrWVBRVE
T

fo — = — — -
f Ipp - _ _ _ _ loe

Figure 14 — TVS Diode Characteristic Curves

When reverse biased up to its Reverse Standoff Voltage, a uni-directional TVS diode does not
conduct (apart from the Reverse Leakage Current discussed further below). As the reverse voltage
reaches and exceeds the Breakdown Voltage, the diode starts to conduct, restricting the further
increase in applied voltage, until the Maximum Peak Pulse Current is reached, at which point the

voltage is effectively clamped at the Clamping Voltage.

When forward biased, a uni-directional TVS diode behaves much like a conventional rectifier diode

and starts conducting with a very small forward voltage drop.

A bi-directional TVS diode is effectively two diodes connected anode-to-anode. It therefore always

behaves as though it is reverse biased.

Note that the quoted values are not continuous ratings. TVS diodes are designed to absorb large

amounts of power during sub-millisecond spikes.

Uni-Directional TVS Diodes
12V Reverse Standoff Voltage uni-directional TVS diodes are fitted across the incoming unregulated

power supply rails of the following modules:

e Power Module
e 2" PCModule
e Basic Serial Splitter Module

5V Reverse Standoff Voltage uni-directional TVS diodes are fitted across the 5V regulated power rails
of the Simulator Interface Module and the Sensor Modules, and between the 5V signal line and

ground on the Sensor Modules.

The uni-directional TVS diodes operate as follows: On power supply rails, the power rail is always
expected to be positive relative to ground rail; between +9V and +12V for the unregulated supplies,

and +5V for the regulated supplies.

26 From the data sheet, © 2020 Littelfuse, reproduced under fair use.

34

Type 2 Simulator — Technical Reference Guide 1.8

On data signal lines, the signal line is expected to be at +5V or 0OV relative to the ground rail.

The TVS diode is connected as shown in the following diagram and is therefore normally reverse
biased at up to? its rated Reverse Standoff Voltage, and no current flows through the diode:

Power or
Data Line

Uni-Directional
TVS Diode

Figure 15 — Uni-Directional TVS Diode

If a transient voltage event causes the power or signal line voltage to spike above Breakdown
Voltage of the TVS diode, the diode starts to conduct, holding the rail down to the Clamping Voltage
and dissipating the power of the spike. This is illustrated in the following diagram:

Power or
Data Line

Uni-Directional
TVS Diode

Figure 16 — Spike Dissipation (Uni-Directional)

If a transient voltage event causes the voltage of the ground rail to rise above that of the power rail
or signal line, the diode is forward biased and starts to conduct, clamping the two lines together and

dissipating the power of the spike.

27 “yp to” because the suggested power supply is 9V or 12V depending on the installation.

35

Type 2 Simulator — Technical Reference Guide 1.8

Bi-Directional TVS Diodes
15V Reverse Standoff Voltage bi-directional TVS diodes are fitted between the RS-232 data lines and
ground in the following modules:

e Power Module
e 2" PCModule
e Basic Serial Splitter Module

12, but the typical

RS-232 data lines may operate in the range +15V to -15V relative to the ground rai
voltage swing achieved by the line drivers used in the Liverpool Ringing Simulator is +8V (MAX233,
MAX208) or £5.4V (MAX3323). These are still within the limits of the RS-232 specification, which

deliberately allows for wide ranges.

Because the RS-232 data lines swing both positive and negative relative to ground, uni-directional
TVS diodes cannot be used, and bi-directional TVS diodes are required.

The bi-directional TVS diodes operate as follows: Regardless of whether the RS-232 data line is
currently positive or negative relative to the ground rail, the TVS diode is always effectively reverse
biased at up to its rated Reverse Standoff Voltage, and no current flows through the diode:

RS-232
Data Line

Bi-Directional
TVS Diode

Figure 17 - Bi-Directional TVS Diode

28 For introductions to RS-232, see the following: https://www.analog.com/en/resources/technical-
articles/fundamentals-of-rs232-serial-communications.html, https://www.arcelect.com/rs232.htm

36

https://www.analog.com/en/resources/technical-articles/fundamentals-of-rs232-serial-communications.html
https://www.analog.com/en/resources/technical-articles/fundamentals-of-rs232-serial-communications.html
https://www.arcelect.com/rs232.htm

Type 2 Simulator — Technical Reference Guide 1.8

If a transient voltage event causes the RS-232 data line spike outside the Breakdown Voltage of the
TVS diode (so above +15V, or below -15V), the diode starts to conduct, holding the rail down to the
Clamping Voltage and dissipating the power of the spike. The direction in which the diode conducts
depends on the polarity of the spike. This is illustrated in the following diagram:

RS-232
Data Line

Bi-Directional
TVS Diode

GND

Figure 18 — Spike Dissipation (Bi-Directional)

Leakage Current Issues

As noted above, the TVS diodes pass a Reverse Leakage Current when reverse biased, and for lower
voltage diodes this can be substantial. The SA5.0A diode has a leakage current up to 600uA at 5V,
and this can cause problems with microcontroller inputs.

Most sensors have “open-collector” outputs. When the sensor is triggered, a transistor inside the
sensor turns on and connects the output pin to the ground rail, pulling it low. When the sensor is not
triggered, the transistor turns off and the output pin “floats”. A pull-up resistor is required to pull the
pin high.

The ATmega328P microcontroller requires an input pin to reach approximately 3V (Viy Min) to be
considered “high”, and has weak internal pull-up resistors which can be activated in code to pull
floating input pins high?. The value of these resistors is not formally specified but is estimated to be

in the range 20kQ — 50kQ), and may vary between devices.

As well as being pulled high by the microcontroller internal pull-up resistor, the sensor output pin is
also connected the ground rail via a TVS diode. Reverse biased, the diode behaves like a resistor, and
the weak internal pull-up resistor and the TVS diode “resistor” form a simple voltage divider which
can be enough to hold the untriggered pin below the 3V required for it to be registered as high by
the microcontroller.

29 See INPUT_PULLUP in the Simulator Interface firmware code, for example.

37

Type 2 Simulator — Technical Reference Guide 1.8

This is illustrated in the following schematic:

: : MAGNETO-RESISTIVE '
I § i SENSOR !

>
==, Internal Weak
=< Pull-Up Resistor

<2. (~20-50k0)

INPUT

ATMega328P
Microcontroller

Output
Transistor

-2
P i
TVS <, Tt’:aD“]:E
Diode e °
< Current
s.

28552M
Sensor

i |

! SIMULATOR
| INTERFACE

Figure 19 — Leakage Current "Voltage Divider" Effect

To counteract this, the Sensor Modules are also fitted with a supplementary “helper” 10kQ pull-up
resistor, as shows in the following diagram. A value of 10kQ has been found adequate with the
sensors used, but if found necessary the value of this resistor could be reduced further to 4.7kQ.

LE 5V
A F
MAGNETO-RESISTIVE |
SENSOR |
-z,
=<, Internal Weak External
'h:ﬁ_ Pull-Up Resistor 10kQ Pull-Up
*<. ("20-50kn) Resistor
INPUT
1
ATMega328P]
Microcontroller '
1
1
1
1
Y
I3 TvsDiode
B‘i’édeT Pt
=2, Current Transistor
25552M
Sensor

| SIMULATOR :
i INTERFACE :

=TT A

Figure 20 — Leakage Current — Supplementary Pull-Up Resistor

38

Type 2 Simulator — Technical Reference Guide 1.8

Connector Pin-Outs

Multiple Device Conventions

The following conventions are used by the Power/Data connections between the Simulator Interface
Module and any downstream devices (such as the Power Module or Multi-PC Modules, where these
are used).

e Datais transmitted by the Simulator Interface Module downstream on pin 2, and from board
Rev D, also on pin 6, using the second RS-232 transmitter in the MAX233.

o Upstream configuration data is received from the (or a) Simulator PC on pin 4.

e Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5
and 7 are used for the nominal +9V supply to the devices, and pins 1 and 3 are OV.

e Any downstream device connected to a Simulator Interface should expect to find and to use
incoming serial data on pin 2 of the RJ45 Interface connector.

e Any downstream device connected to a Simulator Interface should assume that there may
also be incoming serial data on pin 6 of the RJ45 Interface connector®®, and should loop pin 6
to pin 2 on any downstream connector3Z,

e Any downstream device which does not require to send data to an upstream Simulator
Interface should loop pin 4 of the RJ45 Interface connector to pin 4 on any downstream
connector®?,

e Any downstream device which requires to send configuration data to an upstream Simulator
Interface should do so on pin 4 of the RJ45 Interface connector. This pin should also be
looped to pin 4 on any downstream connector.

e Where multiple devices have the potential to send configuration data to an upstream
Simulator Interface concurrently, a device should ground pin 8 to assert their right to send
on pin 4%,

30 As there is from Interface Module Revision D onwards.

31 See the Second PC Module and Basic Serial Splitter Module connectors below.
32 For example, the Second PC Module.

33 For example, the Basic Serial Splitter.

39

Type 2 Simulator — Technical Reference Guide 1.8

Sensor Module Connector
The Sensor Modules use RJ45 connectors for the downstream cabling connection towards the
Simulator Interface, and upstream connections to other Sensor Modules in the same chain.

e Each Sensor Module presents its output signal on pin 8 of the downstream Interface
connector. Each Sensor Module takes any upstream sensor signals appearing on pins 4, 6
and 8 of the Next Sensor connector, and loops them through to pins 2, 4 and 6 respectively
of the Interface connector.

e Pin 2 of the Next Sensor connector is not used, and hence connecting more than four
sensors in one chain is not possible.

e Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5
and 7 are used for the +5V supply to sensors, and pins 1 and 3 are OV. These pins are looped
through between the Interface and Next Sensor connectors.

The wiring of the female PCB connector is shown in the following diagram:

Interface Next Sensor

8 1 8 1
AERIGEIREIR NIH8lERIRE2
g g o g9
o 0 o 0

Sensor Board Connector
(RJ45, PCB Socket, Open Side)

Figure 21 — Sensor Module Connector

The daisy-chain inter-connection of the sensors is illustrated in the following diagram:

@®

@® O),

@ - O G

2 O O O O

@ @ @ @ @ @ @ @ @

@ L @ @ L L L L @

© & . . L L . L L

(1 L 4 L L L L 4 L —0
Interface Sensor 1 Sensor 2 Sensor 3 Sensor 4

Figure 22 — Sensor Chain Inter-Connection

40

Type 2 Simulator — Technical Reference Guide 1.8

Simulator Interface Module Sensor Connector
The Simulator Interface Module uses RJ45 connectors for the upstream cabling connection to the
Sensor Modules. A 4-gang connector is used, allowing the connection of up to 16 sensors.

The wiring of each female PCB connector is shown in the following diagram:

IS—»E®

JANGH — -l
s —mn

JAAGH —-H
€5 —»u
T
e p——
ANl

Sensor Input Connector
(RJ45, PCB Socket, Open Side)

Figure 23 — Simulator Interface Module Sensor Connector

The layout of the 4-gang RJ45 PCB connector is shown in the following diagram:

Sensors 1-4 Sensors5-8 Sensors 9-12 Sensors 13 - 16

Sensor Input Connectors
(RJ45, PCB Socket, Open Side)

Figure 24 — Simulator Interface 4-Gang Connector

41

Type 2 Simulator — Technical Reference Guide 1.8

Simulator Interface Module Power/Data Connector
The Simulator Interface Module uses an RJ45 connector for the downstream cabling connection to
the Power Module (or Multi-PC Modules, where these are used).

e Datais transmitted downstream towards the Power Module on pin 2 (and from board Rev D,
also on pin 6, using the second RS-232 transmitter in the MAX233), and upstream
configuration data is received from the Simulator PC on pin 4.

e Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5
and 7 are used for the nominal +9V supply to the interface, and pins 1 and 3 are OV.

The wiring of the female PCB connector is shown in the following diagram:

ON —»H »
20 A6+ —H
Xl —»-1
20 N6t —H
X4 —»n
AN —H
XL —»-H

AN —-H

Data/Power Connector
(RJ45, PCB Socket, Open Side)

Figure 25 — Simulator Interface Module Power/Data Connector

42

Type 2 Simulator — Technical Reference Guide 1.8

Power Module Power/Data Connector
The Power Module uses an RJ45 connector for the upstream cabling connection to the Simulator
Interface Module (or Multi-PC Modules, where these are used).

e Datais received from the upstream Simulator Interface Module on pin 2, and upstream
configuration data is sent to the interface on pin 4.

e In a basic single PC configuration, any data received on pin 6 is discarded. Pin 6 is connected
only to a TVS surge protection diode.

e Power pins are doubled up to mitigate the effects of voltage drop in longer cable runs. Pins 5
and 7 are used for the nominal +9V supply to the interface, and pins 1 and 3 are OV.

e Pin 8is not connected. This is required for correct operation when the Basic Serial Splitter
Module is used.

The wiring of the female PCB connector is shown in the following diagram:

ON—»H
20 A6+ — =N
#*ON —-H
20 N6+ —1
X4 —»=n
AN —H
XL —»-H

AN —E -

Power Module Connector
(RJ45, PCB Socket, Open Side)

Figure 26 — Power Module Power/Data Connector

43

Type 2 Simulator — Technical Reference Guide 1.8

Second PC Module Connector
The Second PC Module uses RJ45 connectors for the upstream cabling connection to the Simulator
Interface, and the downstream connection to the Power Module.

e Power pins 1, 3,5 and 7, and the spare pin 8 are looped through from the Interface
connector to the Power Board connector.

e Pin4is used to send data (marked RX — configuration data received from the point of view
of the upstream interface module) and is also looped through; this pin is not connected to
the 9-pin serial connector on the Second PC Module.

e Sensor data received on Pin 2 of the Interface connector (marked TX — sensor data
transmitted from the point of view of the upstream interface module) is routed to the 9-pin
serial connector on the Second PC Module.

e Sensor data received on Pin 6 of the Interface connector (marked TX2) is looped through to
pin 2 of the Power Board connector.

e Connecting more than two Second PC modules is therefore not possible; only the two most
upstream modules will receive data from the Simulator Interface Module.

The wiring of the female PCB connector is shown in the following diagram:

Power Board Interface

8 1 8 1
EHEERSR2 S ERETSH2
g< <Tx N %<N<*

o9 O "9 O

Q0 @] oM@}]

2™ PC Board Connector
(RJ45, PCB Socket, Open Side)

Figure 27 — Second PC Module Connector

44

Type 2 Simulator — Technical Reference Guide 1.8

Basic Serial Splitter Module Connector
The Basic Serial Splitter Module uses RJ45 connectors for the upstream cabling connection to the
Simulator Interface Module, and the downstream connection to the Power Module.

e Power pins 1, 3,5 and 7 are looped through from the Interface connector to the Power
Board connector.

e Pin4is used to send data (marked RX — configuration data received from the point of view
of the upstream interface module) and is also looped through; where two Basic Serial
Splitter Modules are daisy-chained, the RS-232 transmitter of the upstream splitter module
is disabled. This mechanism is discussed in detail in a previous section.

e Sensor data received on Pin 2 of the Interface connector (marked TX — sensor data
transmitted from the point of view of the upstream interface module) is routed to the PCs
connected to the Basic Serial Splitter Module.

e Sensor data received on Pin 6 of the Interface connector (marked TX2) is looped through to
pin 2 of the Power Board connector. This data may be used a second, downstream Basic
Serial Splitter Module.

e Pin 8 on each connector is used to enable or disable the RS-232 transmitter of the upstream
splitter module where more than one Basic Serial Splitter Module is used.

e Connecting more than two Basic Serial Splitter Modules is therefore not possible; only the
two most upstream modules will receive data from the Simulator Interface Module, and the
transmitters of all but the most downstream module will be disabled.

The wiring of the female PCB connector is shown in the following diagram:

Power Board Interface

8 1 8 1
flffffff

JBEEESHS 23H3B2RS
sl < S <R <

o o o -
Sle o6 A O

Basic Serial Splitter Board Connector
(RJ45, PCB Socket, Open Side)

Figure 28 — Basic Serial Splitter Connector

45

Type 2 Simulator — Technical Reference Guide 1.8

DB9 Serial Connectors

The Power Module, Second PC Module and Basic Serial Splitter Module all use standard 9-pin female
sub-miniature D connectors (“DB9”) for serial data connections to attached Simulator PCs. The pin-
outs of these connectors are illustrated below.

DTEs & DCEs

In RS-232 communications, the description of connector pins as Transmit or Receive can be
confusing. Devices can be configured as Data Terminal Equipment (DTE) or Data Communication
Equipment (DCE). Traditionally, for example, a PC would be configured as a DTE, connected to a
modem configured as a DCE.

By convention, a DTE has a male connector, a DCE has a female connector, and the DTE-to-DCE
connection uses a female-to-male straight cable®*. A PC acting as DTE transmits data to the DCE from
Pin 3 of the PC’s DB9 connector, which would be designated TD or TX; and receives data from the
DCE on Pin 2, designated RD or RX%*. The DCE uses a female connector, receives data from the DTE
on Pin 3, still designated as the “transmit” pin on the DCE, and sends data to the DTE on Pin 2, still

designated as the “receive” pin on the DCE3®.

The Simulator PCis a DTE. The Simulator Modules are fitted with female DB9 connectors and for
simplicity are all wired for use with straight cables, so are technically DCEs and should by convention
use DCE pin naming conventions.

However, to make the simulator module designs easier to follow, the schematics follow the transmit
and receive pin designations used by the ATmega328P microcontroller UART, and the RS-232 sides
of the Analog Devices (formerly Maxim) MAX233, MAX208 and MAX3323 line drivers. Following
these conventions, the module pins used for transmitting sensor data from the Simulator Interface
to the attached PC are marked TX, and the module pins used for receiving CLI data from the
attached PC to the Simulator Interface are marked RX. This is the opposite of the usual convention
for a DCE.

34j.e. wired pin 1 to pin 1, pin 2 to pin 2, pin 3 to pin 3, and so on.

35 Just to add to the confusion, the Pin 2 RX and Pin 3 TX pin functions are swapped over on 25-pin (DB25) RS-
232 connectors.

36 Refer to the links to introductions to RS-232 given previously.

46

Type 2 Simulator — Technical Reference Guide 1.8

Power Module
The Power Module uses a female DB9 connector for the downstream cabling connection to the

Simulator PC.

e Pin 2 is used for simulator sensor data transmitted to the attached PC.
e Pin 3 is used for CLI data transmitted to the Simulator Interface from the attached PC.

The wiring of this connector is shown in the following diagram:

Power Module
PC Serial Connector
(DBS, PCB Socket, Open Side)

Figure 29 — Power Module DB9 Serial Connector

Second PC Module
The Second PC Module uses a female DB9 connector for the downstream cabling connection to the

Simulator PC.

e Pin 2is used for simulator sensor data transmitted to the attached PC.
e Pin 3is not connected. It is not possible to use the CLI from the PC attached to the Second
PC Module.

The wiring of this connector is shown in the following diagram:

ov
X

Second PC Module
PC Serial Connector
(DBY, PCB Socket, Open Side)

Figure 30 — Second PC Module DB9 Serial Connector

47

Type 2 Simulator — Technical Reference Guide 1.8

Basic Serial Splitter Module
The Basic Serial Splitter Module uses female DB9 connectors for the downstream cabling

connections to the Simulator PCs.

e Pin 2is used for duplicated simulator sensor data transmitted to each attached PC.

e As noted previously in the section on Transmitter Disabling in the Basic Serial Splitter
Hardware section of this document, only one selected Simulator PC connected to a Basic
Serial Splitter Module can be used to send CLI configuration data to the Simulator Interface
Module.

e Pin 3 will be used for CLI data sent to the Simulator Interface from the selected attached PC
only. On all other connectors this pin will connected to an inactive RS-232 receiver.

The wiring of this connector is shown in the following diagram:

(* if enabled)

Basic Serial Splitter Module
PC Serial Connectors
(DBSY, PCB Socket, Open Side)

Figure 31 — Basic Serial Splitter DB9 Serial Connectors

48

Type 2 Simulator — Technical Reference Guide 1.8

Simulator Interface Module Firmware

Sensor Characteristics
Over the years several different approaches have been used for detecting the position of a tied or
dumb bell and translating that position into a signal for use by a Simulator. These are discussed

above.

e For the purposes of the Type 2 Simulator Interface Module, the essential feature of the
sensor is that it should generate a signal pulse with a clean change of logic state when the
bell is at the bottom dead centre of its swing.

e The Type 2 Simulator Interface Module adopts the convention that the output of a sensor
should normally be logic high (~+5V), falling to logic low (~0V) for the duration of the pulse.
This approach retains compatibility with other similar systems.

e The minimum practical pulse duration is a few milliseconds, but should be long enough to
allow for the positive detection of good signals and the rejection of noise. Practical
implementations have shown actual pulse durations in the range 5ms-20ms.

e The design of the Simulator Interface Module firmware is such that the maximum apparent
pulse duration may be several hundred milliseconds. The state of the output from the sensor
is ignored from the time a good signal is confirmed to the expiry of the “guard timer”.

49

Type 2 Simulator — Technical Reference Guide 1.8

Firmware Design

Interrupt Driven vs Polling

As noted in the hardware section above, an interrupt-driven approach to the Simulator Interface
firmware would be problematic on the Atmel ATmega328P microcontroller hardware. The firmware
therefore uses a polling approach. After completing initialization and setup, the main code loop
cycles round all the configured bells’ inputs, processing signals from the Sensor Modules and sending
serial data to the Simulator PC as appropriate. After all bells have been processed, the code loops
round and the process starts again.

In the current version of code (v3.5), with the ATmega328P driven by an external 8MHz resonator,
each iteration of the main polling loop takes approximately 400us when configured for 16 sensors,
which is fast enough for the disadvantages of polling not to be significant. Enabling debug mode and
the CRO timing pin increases the loop time by a few percent, but as these are not intended for active
simulator use this is also not significant.

The timing of the main loop using the CRO timing pin is illustrated in the following CRO capture:

T t@2

=
m
A
d
2]
I=
[

. MEASURE

Figure 32 — Simulator Interface Main Loop Timing

Processing of serial input from the Simulator, in the form of CLI commands, is triggered by the
standard Arduino serialEvent() function.

50

Type 2 Simulator — Technical Reference Guide 1.8

State Machine Operation

The Simulator Interface firmware maintains a set of 16 simple state machines, one for each bell. At
any given time, each state machine may be in one of three possible states: Waiting for Input,
Waiting for Debounce, Waiting for Guard Timer, Sensor Disabled, or Test Mode.

These changes of state are illustrated in the following diagram:

a Sensor Disabled

EEPROM

Configuration CLl

oy

Initialization P Setup ——® Waiting for Input ~——

Pulse T Pulse
Detected Ended

y

@it for Debounce

Debounce Guard Timer
Timer Expired
Expired \

/
Wait for
Guard Timer

r

(o e p— > Test Mode

Figure 33 — State Machine Transitions lllustration

Waiting for Input

When a channel’s state machine is in the Waiting for Input state, on each iteration of the polling
loop the firmware code reads the state of the input pin connected to the associated channel, and
checks for a change in state (since the last poll) from logic HIGH to LOW, which would indicate the
start of a signal pulse from the connected Sensor Module.

e If no HIGH to LOW change in state is detected, then the Interface code does nothing other
than update its record of the last observed state of the input pin, and the code loop moves
on to the next bell.

o If the start of a sensor pulse is detected then the code calculates the time at which the input
de-bounce timer should expire (by adding the value of the global de-bounce timer to the
current time from the microcontroller’s internal clock, in effect setting a timeout value), and
switches the state machine into the Waiting for Debounce state. The default value for the
de-bounce timer is 2ms, but this can be configured through the Simulator Interface CLI.

51

Type 2 Simulator — Technical Reference Guide 1.8

Waiting for Debounce
When a channel’s state machine is in the Waiting for Debounce state, on each iteration of the polling
loop the firmware code reads the state of the input pin connected to the associated channel.

e |[f the pin state is detected as HIGH, then the input pulse previously detected has ceased. The
code treats this as a “misfire” and switches the state machine back to the Waiting for Input
state. The code loop moves on to the next bell.

o If the pin state is still LOW, the code compares the value of the de-bounce timeout with the
current time from the microcontroller’s internal clock.

e If the timeout value has not yet been reached, the code does nothing and moves on to the
next bell. The state machine remains in the Waiting for Debounce state.

e |[f the timeout has been reached or has been passed, the code sends the appropriate
character over the serial interface to the Simulator PC, and switches the state machine into
the Waiting for Guard Timer state.

Waiting for Guard Timer

When a channel’s state machine is in the Waiting for Guard Timer state, the firmware code
compares the value of the Guard Timer timeout with the current time from the microcontroller’s
internal clock.

e If the timeout value has not yet been reached, the code does nothing and moves on to the
next bell. The state machine remains in the Waiting for Guard Timer state.

e If the timeout has been reached or has been passed, the code switches the state machine
back into the Waiting for Input state, and the cycle starts again. The default value for the
Guard Timer is 10cs (100ms), but this can be configured through the Simulator Interface CLI.

e The channel input pin is not read in the Waiting for Guard Timer state (other than for
debugging purposes), effectively debouncing the end of the sensor pulse.

Disabled Sensor

When a channel’s state machine is in the Sensor Disabled state, the firmware code does nothing and
moves on to the next bell. Sensor Disabled state is enabled through the CLI or from EEPROM
configuration data during setup, and the state machine remains in the Sensor Disabled state until
reset through the CLI.

Note that the number of channels to be scanned on each iteration is determined dynamically with
reference to the highest numbered enabled channel: For example, if the highest numbered enabled
channel is channel 10, only channels 1 to 10 will be scanned, shortening the loop time. If the highest
numbered enabled channel is channel 16, then channels 1 to 16 will be scanned.

Test Mode

The Test Mode state implements a very simple test function, ignoring sensor inputs and generating
simple test patterns on the serial interface. Test Mode state is enabled through the CLI, and persists
until the interface is reset. This facility exists primarily for testing other components of a simulator
installation.

The foregoing description covers the core simulator functionality. In addition to this, debug code
provides additional timing and data gathering functions which are described later.

52

Type 2 Simulator — Technical Reference Guide 1.8

Timer Issues

The ATmega328P microcontroller lacks a true Real Time Clock. The library inbuilt timing functions
(millis() and micros()) return the number of milliseconds or microseconds respectively since the
microcontroller was last powered on or the last hardware reset. All times used within the software
are therefore offset times from this baseline.

The Simulator Interface firmware uses both the millis() and micros() functions for its main timing and
delay calculations (micros() is used only by debugging code). These functions return 32-bit unsigned
long data types; consequently the value returned by micros() will increase and then overflow back to
zero after approximately 50 power-on days, and the value returned by micros() will overflow
approximately every 70 minutes.

These overflows would disrupt simulator processing, as state machines may become “stuck” waiting
for an overflowed timer to expire.

e In the case of the micros() timer, which is used for the sensor debounce timer, the Simulator
Interface firmware attempts to catch this overflow, and looks for timer expiry times which
are an unreasonably long time into the future.

e For the millis() timer, the current version of Simulator Interface firmware will require a
power cycle or reset to clear the problem. This issue may be addressed in a future version of
the firmware. However, this is considered a low-priority issue because it is unlikely that a
Simulator Interface will be left powered up for such extended periods of time.

Sensor De-Bouncing

The Simulator Interface firmware reacts to the start of a pulse from a sensor. In practice the output
from some sensor types may be noisy and consist of a number of very short pulses, especially at the
start or end of a pulse. This is known as “bounce”, a term derived from the physical elastic bounce of
a mechanical contact. This is illustrated in the following diagram:

Time >

Guard Timer

Pulse

Figure 34 — Sensor De-Bounce lllustration

The current version of the Simulator Interface code reacts to the first observed transition in the
output of the sensor (indicated by the red arrow on the diagram).

The code then requires that the sensor signal remains stable for at least the duration of the global
debounce timer (default 2ms, configurable). If the detected signal ceases within that interval then
the signal is treated as a “misfire”, is ignored, and the code returns the state machine to the Waiting
for Input state. The debounce timer is specified in milliseconds, but calculated in microseconds for
improved consistency. The resolution of the microsecond timer is 8us.

53

Type 2 Simulator — Technical Reference Guide 1.8

When the state machine has switched into the Waiting for Guard Timer state, the input pin is not
read at all (other than by debug code, which includes specific detection and reporting of multiple
pulses), and any sensor bounce is therefore ignored. Provided that the overall sensor pulse is shorter
than the duration of the guard timer, this effectively de-bounces the input. Typically, the input pulse
from an optical sensor will be a few milliseconds in duration, and the guard time several hundred
milliseconds, so this is not a practical issue.

In testing, no evidence of sensor bounce from the standard infra-red optical or Magnetic Sensor
Modules was observed, within the resolution of the debug timing code and the microsecond timer.

Debugging & Timing Features

In addition to the core timing and delay functions described above, which are required for core
Simulator operation, the Simulator Interface firmware implements further timing and data gathering
for debugging and experimental purposes. This output is not suitable for sending to Simulator
Software package, but may be accessed via a terminal emulator such as PuTTY.

This debugging functionality is not part of the MBI Protocol specification.

Under normal operations, each pulse from a Sensor Module causes one ASCII character (following
the conventional ringing notation of 1-9, 0, E, T) to be sent via the serial port for use by the
Simulator PC, as defined in the MBI Protocol specification.

The following debugging features are available in firmware v3.5:

Debug Mask
The Debug Mask allows for debugging output to be enabled on a specific subset of input channels.

e This may be used to reduce the volume of debug output generated during fault finding. By
default, the mask enables debugging on all 16 channels.

e The Debug Mask setting may be saved in non-volatile EEPROM?’.

e Note that enabling Debug Mode globally suppresses normal simulator output for all
channels, not just those set in the debug mask.

Debug Pulse Timer
When the Debug Pulse Timer flag is set, each valid input pulse will generate output on a separate
line, with the following space separated data fields:

e The identifier “S”,

e The channel number (1-16),

e The mapped ASCII character (1-90ETABCDWXYZ),

e The guard timer expiry offset time in milliseconds,

e The duration of the (first) detected pulse, in microseconds,

o The total number of pulses detected before the expiry of the guard timer,

o The delta between the start of this input pulse and the start of the previous one, in
milliseconds.

37 The Debug Mask is saved to EEPROM if the Save Settings CLI command (“S”) is invoked when Debug Mode is
active.

54

Type 2 Simulator — Technical Reference Guide 1.8

Note that the pulse length timing code is not entirely robust: the assumption is made that the first
Sensor Module pulse will be shorter than the guard timer. If the first pulse has not completed by the
time the guard timer expires, a spuriously large result would be displayed for the pulse length,
because the last recorded pulse end time (from the previous sensor pulse) will be before the current
pulse start time, and the unsigned long data type will overflow. This is trapped by the code and
displayed as a zero duration. This limitation affects debugging output only.

Debug Show Misfires
When the Debug Show Misfires flag is set, pulses shorter than the de-bounce timer will generate
output on a separate line, with the following space separated data fields:

o The identifier “M”,

e The channel number (1-16),

e The mapped ASCII character (1-90ETABCDWXYZ),

e The debounce timer expiry offset time in microseconds,

e The duration of the (first) detected pulse, in microseconds.

Debug Swing Timer
When the Debug Swing Timer flag is set, each valid input pulse will generate output on a separate
line, with the following space separated data fields:

e The identifier “T”,

e The channel number (1-16),

e The mapped ASCII character (1-90ETABCDWXYZ),

e The duration of the current swing in milliseconds,

e The delta between the duration of the current and previous swing, in milliseconds.

The swing timer is intended to be used to check how close the sensor is to the BDC point, with the
bell down and swinging through small arcs.

The duration of the current swing is defined as the period between the start of the most recent
sensor pulse and the start of the sensor pulse immediately previous (and thus is always positive).
The swing time delta is the difference between the current swing duration and that of the swing
immediately previous (and may be positive or negative). Adjust the position of the sensor to get the
delta value as close to zero as possible.

55

Type 2 Simulator — Technical Reference Guide 1.8

Debug Show Debounce
When the Debug Show Debounce flag is set, pulses longer than the debounce timer will generate
output on a separate line, with the following data fields:

o The identifier “D”,

e The channel number (1-16),

e The mapped ASCII character (1-90ETABCDWXYZ),

e The debounce timer expiry offset time in microseconds.

Debug Show LED

When the Debug Show LED flag is set, the diagnostic LED output will be enabled for all bells for
which debugging is enabled. By default, the diagnostic LED indicates pulses detected on channel 1
only.

Debug Settings
Debug settings other than the Debug Mask are volatile and are not retained in EEPROM. Resetting
the Simulator Interface will revert to the following default debug settings:

e Debug Mode: Off
e Debug Flags: Debug Pulse Timer
e Debug Mask: EEPROM Value

Note that changes to the configured Debug Flags and the Debug Mask are remembered if Debug
Mode is disabled via the CLI, so debugging may be resumed easily with the same settings.

Serial Input & Command Line Interface

The Simulator Interface firmware implements a simple Command Line Interface (CLI), which may be
used to configure certain aspects of the Interface, or to gather debugging and timing data. This
functionality is not part of the MBI Protocol specification.

The Simulator Interface also must handle legitimate MBI Protocol commands and delay data sent by
the Simulator Software, in order to differentiate these from CLI input (even though these data are
not used by the Type 2 Simulator Interface). This processing is done inside the Arduino serialEvent()
function, with the CLI itself handed off to a set of separate functions.

To achieve this, the firmware adopts the following strategy when handling serial input.

e The first byte received is examined. If this byte is the MBI Protocol OxFD command, a OxFD
response is sent. If the first byte is any other recognised MBI Protocol command (See
Appendix B), it is discarded. No other responses are sent to MBI commands.

o If the first byte is not a recognised MBI Protocol command, it may be the first of a set of
updated delay values. There is no defined command byte defined in the MBI Protocol to
precede a set of delay values, so the Simulator Interface attempts to read a full set of 13
bytes (12 values plus the specified terminator byte) within a defined timeout interval (one
second in the current v3.8 firmware).

e If 12 values plus the correct terminator byte have been received within the timeout period,
these are assumed to be delay values, and all 13 bytes are discarded.

56

Type 2 Simulator — Technical Reference Guide 1.8

e If afull set of values cannot be read, or the terminator is incorrect, the first (and possibly
only) byte read is passed on to the CLI handler for further examination. Any bytes after the
first are discarded.

e If the received byte is a recognised CLI command (Appendix B), it is processed, and any
appropriate response sent.

e If the received byte is not a recognised CLI command, it is discarded.

The diagnostic LED is used to indicate that a CLI command has been received, or that an error
occurred. The CLI command are documented in Appendix D below.

Sensor Enable/Disable

The Simulator Interface firmware can be configured to disable any individual sensor input, for
example to bypass temporarily a faulty sensor. Disabled inputs are ignored by the firmware, and
generate no serial output, including debugging output. This behaviour is configured using CLI
commands (Appendix D), accessed via a terminal emulator. The enabled or disabled state of each
input channel is stored in non-volatile EEPROM.

As noted above, the number of channels to be scanned on each iteration is determined dynamically
with reference to the highest numbered enabled channel.

Memory Footprint

The ATmega328P has a very limited 2kByte SRAM capacity. The MemoryFree software library has
been incorporated into the Simulator Interface code to track SRAM usage. This may be displayed via
the Interface CLI. Flash (Program) Memory usage is reported by the Arduino IDE when the software
sketch is compiled.

The memory footprint of the Simulator Interface firmware v3.8 on an ATmega328P is as follows:

e 13,016 /32,768 Bytes Flash Memory
e 839 /2,048 Bytes SRAM
e 23 /1,024 Bytes EEPROM

The compiler F() macro has been used throughout the Interface code to store static text strings into
program memory, thus relieving pressure on SRAM. As a result, the current v3.8 of the Interface
firmware can run on older ATmegal68 microcontrollers with 16kBytes of Flash Memory and only
1kByte of SRAM3E,

38 Contact the project for guidance on the adjustments required to install firmware on the ATmegal68P
microcontroller.

57

Type 2 Simulator — Technical Reference Guide 1.8

Metrics
The effects of three key metrics have been considered in the design of the Simulator Interface
firmware. These are:

e The inter-blow interval: The rate at which the Simulator Interface is required to detect and
transmit signals from all Sensor Modules to the Simulator during normal ringing.

e The inter-row interval: The rate at which the Simulator Interface is required to detect signals
from any one Sensor Module during normal ringing.

e The Sensor Pulse Duration: The length of the pulse from each Sensor Module which the
Simulator Interface is required reliably and unambiguously to detect.

Each of these metrics is considered further below.

Inter-Blow Interval Requirements
For any given ring of bells, the inter-blow and inter-row requirements can be estimated from the
known speed of ringing.

For example, for the Liverpool Cathedral bells, taking 4h 30m as a representative speed for a peal of
5042 changes of Maximus on the (82cwt) twelve, the inter-blow interval in rounds is given by the
calculation:

(270 minutes x 60 seconds) / (5042 changes x 12 bells) = 0.268s or 268ms

Taking 3h 15m as a representative speed for a peal of 5056 changes of Major on the light (24cwt)
eight, the inter-blow interval in rounds is given by the calculation:

(195 minutes x 60 seconds) / (5056 changes x 8 bells) = 0.289s or 289ms

The serial protocol used by the Simulator Interface Module runs at 2400 bits per second, and sends a
single ASCII character for each blow of each bell. Each character comprises 10 bits (8 data bits, plus 1
start bit and 1 stop bit), giving a maximum continuous data rate of 240 characters per second, or
approximately 4.2ms per character.

This confirms that the Simulator Data Connection has sufficient capacity, and has a resolution of
approximately 1.6% of the inter-blow interval. Put another way, if the bells are fired accurately then
the signals from all 12 bells can be sent over the data link to the Simulator PC within 51ms, or less
than one fifth of the normal inter-blow interval. (True firing, the simultaneous striking of more than
one bell, is not achievable with a Simulator Interface of this design.)

Under normal operation, where one byte at a time is sent to the Simulator PC, the serial print
function call is non-blocking and operates asynchronously, so the main code loop is not slowed down
or paused while data is sent to the Simulator PC*.

(Note that generating detailed debugging output from a large number of bells can cause the serial
output buffer to fill and the serial print function to block. This can cause issues with timing behaviour
and debugging output.)

39 https://blog.arduino.cc/2011/10/04/arduino-1-0/

58

https://blog.arduino.cc/2011/10/04/arduino-1-0/

Type 2 Simulator — Technical Reference Guide 1.8

A more detailed analysis of the inter-blow intervals for a large sample of rings of bells may be found
in Appendix C.

Inter-Row Interval Requirements
The inter-row interval follows from a similar calculation:

For the Liverpool Cathedral bells, taking 4h 30m as a typical speed for a peal of 5042 changes of
Maximus, the inter-blow interval in rounds is given by the calculation:

(270 minutes x 60 seconds) / 5042 changes = 3.21s

Taking 3h 15m as a typical speed for a peal of 5056 changes of Major on the light (24cwt) eight, the
inter-blow interval in rounds is given by the calculation:

(195 minutes x 60 seconds) / 5056 changes = 2.31s

As discussed below, the Simulator Interface firmware runs with a loop time of approximately 400us,
giving a resolution of less than 0.017% of the typical 12-bell inter-row interval.

A more detailed analysis of the inter-row intervals for a large sample of rings of bells may be found
in Appendix C.

Sensor Pulse Duration

For a typical, the theoretical expected duration of the signal pulse from the Sensor Module is a
function of the width of the trigger (e.g., 25mm wide reflective tape or 20mm diameter magnets in
the current installations) and the linear speed of the rim of the bell wheel as the bell passes through
the bottom dead centre trigger point.

This linear speed can be approximated as 4nR/T, where R is the radius of the wheel, and T is the
pendulum period of the bell for small oscillations. This calculation is based on the work of Frank King
of Cambridge®. Applying the basic equations of motion to these parameters produces theoretical
pulse durations of approximately 4ms.

However, this does not take into account the actual size of the sensor head, and the fact that the
sensor head may activate before the trigger is fully axially aligned with the module (and will not
deactivate until after the trigger has ceased to be fully axially aligned). In addition to this, the
detection zone on many sensors is effectively conical, and at the wheel is therefore somewhat larger
than the physical diameter of the detector.

40 https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf

59

https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf

Type 2 Simulator — Technical Reference Guide 1.8

The following diagram illustrates this effect:

Start of
Pulse

Magnet

Direction
of Travel

Sensor Head

End of
Pulse

Figure 35 — Sensor Pulse Duration lllustration

In the diagram above, the Sensor Module signal pulse starts before the trigger is fully aligned with
the sensor (top red arrow), and ends after the trigger has cease to be fully axially aligned (bottom
red arrow). Thus, the effective width of the trigger, and the duration of the resulting pulse, are
increased.

This is supported by evidence: An analysis of the theoretical and observed sensor pulse durations
from the optical Sensor Heads of the original Liverpool Cathedral Simulator installation can be found
in Appendix C. The sensor shielding tube has an internal diameter of approximately 17mm, and the
observed values of pulse duration, approximately 6ms, indicate that the effective width of the
reflector is increased from the actual 25mm to approximately 40mm.

60

Type 2 Simulator — Technical Reference Guide 1.8

Potential Problems
The use of a polling approach in the Simulator Interface results in a number of potential problems:

Missed Sensor Signals

If the Simulator Interface firmware polling interval is longer the pulse emanating from a Sensor
Module, then there is a risk that some pulses may be missed. If a pulse starts just after the polling
loop has examined a particular input pin, the pulse will have completed before the polling loop next
returns to that input pin. As a result the pulse will be missed and no signal will be sent to the
Simulator.

The following diagram illustrates this problem:

\J

Time

Polling Loop Time Polling Loop Time Polling Loop Time

Pulse

Figure 36 — Missed Sensor Signals lllustration

The red dashed arrows indicate the point at which the polling loop examines a particular input pin.
During the remainder of the polling loop an incoming sensor pulse begins and completes without
ever being detected.

Given a typical pulse duration of approximately 6ms, and a maximum polling loop duration of
approximately 400us, each pulse therefore lasts approximately 15 polling loop cycles, so this
problem does not arise.

Duplicated Sensor Signals

If the Simulator Interface firmware polling interval is shorter than the pulse emanating from a Sensor
Module (which, as noted above, is a requirement for reliable detection), then there is a probability
that some pulses may be detected more than once. If the polling loop examines a particular input
pin just after a pulse starts, then that pulse may still be in progress when the polling loop next
returns to the same input pin. As a result the pulse will be detected more than once and duplicate
signals would be sent to the Simulator PC.

61

Type 2 Simulator — Technical Reference Guide 1.8

The following diagram illustrates this problem:

Time ———»

Polling Loop Time | Polling Loop Time | Polling Loop Time | Polling Loop Time

Pulse

Figure 37 — Duplicated Sensor Signals lllustration

The red arrows indicate the points at which the polling loop examines a particular input pin. Because
the incoming sensor pulse is longer than the polling loop, it is still in progress during the next loop,
and would be detected again.

This problem is avoided by triggering based on detecting the transition of the input pin state from
HIGH to LOW, and keeping state in the Interface code. Therefore, when the polling loop next returns
to the input pin, the pin is still LOW, but no state transition is detected, and no duplicate signals are
sent.

It will be observed that decreasing the polling loop duration to avoid the Missed Sensor Signals
problem results in the manifestation of the Duplicated Sensor Signals problem, and vice-versa.

Variable Odd-Struckness
A further problem arising from the use of a polling architecture in the Simulator Interface is variable
odd-struckness.

e If a pulse from any particular Sensor Module starts a fraction of a second before the polling
loop examines the associated input pin, the pulse will be detected almost immediately.

e If the pulse starts a fraction of a second after the polling loop examines the associated input
pin, the pulse will be detected on the next iteration of the polling loop, in this case
approximately 400us later.

e Thereis no fixed correlation between the start time of a pulse and the current position of
the polling loop in its cycle, and therefore each pulse is subject to an effectively random
delay of between zero and 400us (the duration of the polling loop).

e This would be experienced as the simulated bell striking randomly early or late by between
zero and half the polling interval.

62

Type 2 Simulator — Technical Reference Guide 1.8

The following diagram illustrates this problem:

Time ——————— >

Polling Loop Time | Polling Loop Time | Polling Loop Time | Polling Loop Time

“ Pulse

Polling Loop Time

‘ Pulse T ‘

Polling Loop Time Polling Loop Time | Polling Loop Time

Figure 38 — Variable Odd-Struckness lllustration

The upper red arrow indicates the polling loop examining a particular input pin just after the start of
an incoming sensor pulse. The delay due to polling is effectively zero. The lower red arrow indicates
the polling loop examining a particular input pin just before the start of an incoming sensor pulse,
and detecting the pulse on the next iteration of the loop. The delay due to polling is effectively equal
to the polling loop interval.

Given a typical inter-row interval of say 2.3s, and a maximum polling loop duration of approximately
400us, the variable odd-struckness contributed due to this problem is therefore between zero and
10.009% of the inter-row interval, and in practice this is not detectable. Even for much lighter rings
of bells with much shorter inter-row intervals this may still be assumed to be negligible.

Scope does exist to reduce the length of the polling loop further. The debug and timing code
contribute approximately several tens of microseconds to the loop time, and could be omitted
entirely from production code.

Latency
The latency of a simulator system is the delay between the bell triggering the sensor at BDC, and the
arrival of the corresponding signal at the Simulator PC.

The latency of the simulator system is not critical in BDC detecting systems, provided it is relatively
small (much less than the time between BDC and strike), is reasonably consistent, and is symmetrical
about the BDC position. Latencies of up to several tens of milliseconds may be accommodated by
tuning the delay time applied by the Simulator PC.

The latency of the simulator consists of the sum of the following:

e The debounce timer,
e The polling loop time,
e The RS-232 serial speed.

63

Type 2 Simulator — Technical Reference Guide 1.8

The default debounce timer is set to 2ms. As discussed above, the polling approach results in some
variation of detection time, and the polling loop time is approximately 400us. Moving the state
machine from Waiting for Input to Waiting for Debounce, and then detecting the end of the
debounce timer, involves two polling events. The average latency from the start of a sensor pulse to
the start of the serial transmission should therefore be approximately*! 2.4 +0.2m:s.

The serial line speed is 2400bps. Each ASCII character transmission consists of 10 bits (8 data bits,
preceded by one start bit and followed by one stop bit). The time taken to transmit one character is
therefore approximately 4.2ms and is constant.

The theoretical total latency of the simulator is therefore approximately 6.6 £0.2ms. Any additional
latency arising in the Simulator Software Package is beyond the scope of this discussion but may be
compensated for by tuning the delay time applied by the software.

The typical latency of the Simulator Interface is illustrated in the following annotated CRO capture:

H 3 T %

Figure 39 — Simulator Interface Latency

e The upper yellow trace represents a simulated sensor pulse measured on a Simulator
Interface Module input pin. The duration of the pulse is approximately 5ms, and the pin
transitions from +5V to OV at the start of the pulse.

e The lower blue trace represents the RS-232 serial transmission, measured on the serial
transmit pin of the same interface.

e Onthe serial line, logic 0 is a high voltage (approximately +8V), logic 1 is low (approximately
-8V), and the bus idles at the logic 1 level*. The start bit is logic 0, the stop bit is logic 1, and
hence the end of the stop bit cannot be distinguished from the idle level.

41 This estimate does not consider the resolution of the microsecond timer, 8ys.
42 Note that these are for the RS-232 serial interface. The TTL serial interfaces between the microcontroller and
the line driver operates between 0V and +5V, with inverted logic.

64

Type 2 Simulator — Technical Reference Guide 1.8

The character transmitted is ASCII “1” (0x31), binary 00110001, and is transmitted LSB first.
Reading from left to right, the total bit stream is therefore “0100011001” (10 bits: a logic 0
start bit, ASCII “1” LSB first, and a logic 1 stop bit).

The delay between the start of the sensor pulse and the start of the serial transmission is
measured over multiple pulses as being between 2.200ms and 2.660ms, average 2.442ms.
The latency start to end of the serial transmission can be estimated as approximately 4.2ms.
These values are very close to the theoretical predictions.

The following logic analyser decode taken at the MAX233 transmitter input shows the same effect:

‘L Session 1 - PulseView
) Run é“" Session 1 £

Session 1

- B~ &, > 2 = [EY 9) NP sigrokFx2 LA (8ch) + % M [sksamples ~[somz ~| <@
0 +2m +4 ms +6 ms
I I | @ I I I | I I I | El v
[
B»
UART T (Start){ 1 i Stop |

Figure 40 — Logic Analyser Decode

Trace DO is taken from the TTL level signal at the MAX233 transmitter input. The signal is
therefore inverted with respect to the transmitter output recoded by the previous
oscilloscope trace.

Trace D1 is the trigger, taken from the channel 1 sensor line. Recording started at Time 0
when this line transitioned to logic 0. This was a manual trigger, so the end of the trace is
not visible as the pulse was more than 8ms long.

65

Type 2 Simulator — Technical Reference Guide 1.8

Software Development & Compatibility

Development Environment

The current Simulator Interface firmware has been developed on the following versions of operating
systems, development tools and Simulator Software packages. Later versions of tools are expected
to be compatible:

e Microsoft Windows 10 64-bit
e Arduino IDE 1.8.19

e PuTTYO0.81

e PortMen-3.03%

Source Code Availability

The current version of the firmware for the Simulator Interface is available from the project GitHub
repository at https://github.com/Simulators. The firmware is released under the GNU General Public
Licence (GPL), Version 3.

Simulator Software Compatibility

Tested Configurations
The Type 2 Liverpool Ringing Simulator Interface has been tested successfully with Simulator
Software Packages up to the following versions:

e Abel10.3.2
e Beltower 2025 (14.05)
e Virtual Belfry** 3.10

Untested Configurations
Compatibility with the Bagley Ringleader hardware simulator has not been tested. This device has
been unavailable for purchase for some time due to key components no longer being available.

Future Simulator Support
The Simulator Interface software has also been structured to allow for the future addition of support
for other simulators should this be necessary.

43 PortMon is not available for 64-bit systems.
44 3.1b is the minimum version of Virtual Belfry required for proper handling of interfaces of this type.

66

https://github.com/Simulators

Type 2 Simulator — Technical Reference Guide 1.8

USB-to-Serial Adapters

If the Simulator PC does not have an available RS-232 serial port, then a USB-to-Serial adapter may
be used. These are available from a variety of manufacturers, but mainly use controller chips
manufactured by Prolific and FTDI.

Modern versions of Windows include drivers for many USB-to-Serial adapters. However, older
versions of Windows or some adapters may require the installation of software drivers. This section
illustrates the installation process for older versions of Windows. Consult the documentation for
your USB-to-Serial adapter to check whether the adapter is supported on your version of Windows,
and whether manual driver installation is required.

This section also illustrates the process for renumbering COM ports if your adapter is assigned a
COM port number outside the range supported by your Simulator Software Package. The process is
similar on later versions of Windows.

Drivers for adapters based on Prolific* and FTDI*® controllers are available from the respective
websites; the driver required is the Virtual COM Port or VCP version.

A typical USB-to-Serial adapter (in this case from Prolific) is shown in the following photograph.

Figure 41 — Example of a USB-to-Serial Adapter

4 https://www.prolific.com.tw/US/index.aspx
46 https://ftdichip.com/drivers/vcp-drivers/

67

https://www.prolific.com.tw/US/index.aspx
https://ftdichip.com/drivers/vcp-drivers/

Type 2 Simulator — Technical Reference Guide 1.8

Driver Installation

Follow the installation instructions supplied with the USB-to-Serial port driver software package. This
example uses adapters and drivers with both Prolific and FTDI chipsets, but the approach is similar
for adapters from other vendors.

1. Runthe installer supplied with the driver software package. Both Prolific and FTDI drivers
use a standard Windows installer.

PL2303 USB-to-Serial Driver Installer Program X

Welcome to the InstallShield Wizard for PL-2303
USB-to-Senal

The InzstallShield \Wizard will install PL-2303 USB-to-Sernial
on your computer, To continue, click Mext,

¢ Back Mext = l[Cancel

Figure 42 - Prolific Driver Installation

68

Type 2 Simulator — Technical Reference Guide 1.8

2. When the installation is complete, close the installer. A restart of the PC may be required.

PL2303 USB-to-Serial Driver Installer Program

Install5 hield Wizard Complete

The InztallShield Wizard has succeszfully installed PL-2303
I1SB-to-Serial. Click Finizh to exit the wizard,

¢ Back Cancel

Figure 43 — Driver Installation Complete

3. Connect the USB-to-Serial adapter to a spare USB port on the Simulator PC. To ensure
consistent COM port numbering and avoid the need to reconfigure the Simulator Software
Package, it is best always to use the same USB port for the adapter.

4. The Simulator PC should detect the USB-to-Serial adapter, configure the driver, and a
confirmation balloon message should appear briefly above the Windows system tray.

j," Found New Hardware x

Wour new hardware is installed and ready to use,

Figure 44 — Found New Hardware Message

69

Type 2 Simulator — Technical Reference Guide 1.8

Driver Verification
To verify that the USB-to-Serial adapter driver is correctly configured, open the Windows Device
Manager and look for the adapter in the Ports section.

1. Right-click the Computer or My Computer icon on the Windows desktop and select the
Properties menu item. These examples are from Windows XP and Windows 7 PCs, the
process and appearance may vary for other versions of Windows.

Open
Explore
Search...
Manage

Map Metwork Drive, .,

Disconnect Metwaork Drive. .

Create Shorbcut
Delete
Renarne

Propetties

Figure 45 — My Computer Context Menu (Windows XP)

Open
Browse with Paint Shop Pro
Manage

Map network drive...

Disconnect network drive..

Create shortcut
Delete

Rename

Properties

Figure 46 — Computer Context Menu (Windows 7)

70

Type 2 Simulator — Technical Reference Guide 1.8

2. On Windows XP, click on the Hardware tab, and then click the Device Manager button.

System Properties

[System Flestare I Automatic Update I Femate |
| Gereral | ComputerMame | Hadwaie | pdvanced |

Device Manager

The Device Manager liztz all the hardware devices installed
= oh yaur computer, Uze the Device Manaager to change the
properties of any device,

Device Manager

Dirivers

Diriveer Signing lets you make sure that installed drivers are
compatible with Windows. Windows Update lets you zet up
hiow Wwindows connects to Windows Update for drivers.

’ Dirivver Signing] ’ ‘Windows Update

Hardware Profiles

Hardware profiles provide a way for you to get up and store
different hardware configurations.

’ Hardware Profiles]

[(] H Cancel] Apply

Figure 47 — System Properties Hardware Tab (Windows XP)

3. On Windows 7, click the Device Manager button.

Control Panel Home

View basic informatio

|®' Device Manager Windows edition
B Remote settings Windows 7 Professional
¥y System protection Copyright © 2003 Micro
'@J Advanced system settings Service Pack 1

Get more features with a

Figure 48 — System Properties Hardware Tab (Windows 7)

71

Type 2 Simulator — Technical Reference Guide 1.8

4. Expand the Ports (COM & LPT) section of the Device Manager list. The USB-to-Serial adapter
should be listed, and the COM port number identified. In this example the adapter has been
assigned the Virtual COM Port number COM3.

£ Device Manager E@

File Action View Help

m &S 2 A
4

=
+ Q‘ Batteries
+- iy Computer
+-age Disk drives
+ g Display adapters
+ i DVDJCD-ROM drives
+-{idg Human Interface Devices
+-{=4 IDE ATAJATAPT controllers
+-1z Keyboards
+ ’_'_) Mice and other pointing devices
+- B8 Mebwork adapters
= 5 Parts (COM & LPT)

¥ pripter Port (1PT1Y

I ré’i Prolific USB-to-Serial Comnn Part (COM3) I
+! ouUnd, wIdeo and game controllers

+- I System devices
+ Universal Serial Bus controllers

Figure 49 — Device Manager (Driver Installed)

5. If the device driver software has not been installed correctly, the adapter may be found with
a warning marker in the Other Devices section of the device list. Install the device driver
software or refer to the documentation for the USB-to-Serial adapter.

£ Device Manager,

File Action ‘Wiew Help

2
=B #-9A71DCCEER2CH

@: Batteries

'y Computer

“e Disk drives

g Display adapters

i DVDICD-ROM drives

E8 Human Interface Devices
+-i=y [DE ATASATAPL cantrallers

+- Kevboards

+-1 ") Mice and other pointing devices
+- EE Metwark adapters

- I‘{? 1J5E-Serial Contraller © I

+- ' Ports [COM & LPT)
+-@, sound, video and game contrallers
+ g System devices
s

Universal Serial Bus controllers

+- [+ - F- [

Figure 50 — Device Manager (Driver Missing)

72

Type 2 Simulator — Technical Reference Guide 1.8

COM Port Reconfiguration

Current versions of specific Simulator Software Packages require that the Virtual COM Port number
assigned to a USB-to-Serial adapter is in a specified range?’. If the adapter has been assigned a COM
port number outside the supported range, the port must be reconfigured to lower value®,

1. Open the Windows Device Manager as described above.
Expand the Ports (COM & LPT) section of the Device Manager list. The USB-to-Serial adapter
should be listed, and the COM port number identified. In this example the Prolific adapter
has been assigned the Virtual COM Port number COM14, which is beyond the range
supported by Abel.

£ Device Manager, E”E| E|
File Action View Help

g 2
A A-947 1 DCCS662C
E Batteries
"¢ Computer
e Disk drives
g Display adapters
i DVDJCD-ROM drives
{8 Human Interface Devices
IDE ATASATAPI controllers
Z» Keyboards
") Mice and ather pointing devices
HS MNetwork adapters
5 Ports (COM&LPT)
¥ Prigter Port (LPT1Y
F‘f Pralific USB-ko-Serial Carnrn Park (COM14)

g
+ System devices
+ Universal Serial Bus controllers

T [- - - - [

Figure 51 — Device Manager (Port COM14)

47 Abel: COM1 - 8. Beltower: COM1 — 32 (8 prior to Beltower 2016).
48 Virtual Belfry does not have this requirement.

73

Type 2 Simulator — Technical Reference Guide 1.8

3. Right-click the USB-to-Serial adapter entry and select the Properties menu item.

£ Device Manager, :l El[gl
File Action W¥iew Help

mESES 2 A <=<sBa

=

5, A-9R71DCCS662C4
E Eatteries
vj Computer
wge Disk drives
§ Display adapters
s DVDYCD-ROM drives
88 Human Inkerface Devices
=) IDE ATAMATAPT controllers
‘z» Keyboards
'ﬂ'_', Mice and other painting devices
HE Network adapters
= 5 Parts (COM & LPT)

5 Prinker Pork (LPT1)

ol ol o
+-®, sound, video and game « Update Driver...
+|- by System devices Disable
+ % Universal Serial Bus conty Uninstall

0 O Oy O O O O

Scan for hardware changes

(T —

Opens property sheet For the current selection,

Figure 52 — Device Manager Context Menu
4. Click on the Port Settings tab, and then click the Advanced... button.

Prolific USB-to-5erial Comm Port (COM14) Properties

Genera| Part Settings |!3river || Details|

Bitz per gecond:

Data bits: 8 v|
Parity: | None |

Stop bits: [1 v|
Flow cortrol | None v|

I[Advanced...]“ Restore Defaults]

[0k] [Cancel

Figure 53 — COM Port Properties

74

Type 2 Simulator — Technical Reference Guide 1.8

5. Use the COM Port Number dropdown to select a COM port number in the range COML1 to
COMS. Then click OK. Note that some values may be listed as “in use” if they have ever been
assigned (for example, if other USB devices have been attached to the PC in the past). Use
the Device Manager to determine which COM ports are in use.

Advanced Settings for COM14

Usze FIFD buffers [requires 16550 compatible LART)

H

K.

Select lower settingz to comect connection problems.
Defaults

Select higher settings for faster performance.

Fieceive Buffer: Low (1] J High(14] [14)

Tranzmit Buffer: Low [1) L J High (18] [1E)

COM Port Mumber: || COM14 v

COmM1 ~
COM2 |

COms -
COME

COM7

Cama

Cam3

COmM10

CamM1 [
COom12

Ok ” Cancel]

Figure 54 — COM Port Advanced Settings (Prolific)

6. The Advanced Settings window for the FTDI driver is more complex, but the reconfiguration
method is the same.

r

Advanced Settings for COM6&

COM Port Murnber ! || COMe R || OK

LUSE Transfer Sizes Cancel

Select lower settings to correct performance problems at low baud rates,

Defaulks
Select higher settings for Faster performance.

Receive (Bytes): 4096 w
Transmit (Bytes): 4096 hd

Bl Cptions Miscellaneous Options
Select lower settings to correct response problems. Serial Enumerakar
Serial Printer O
Latency Timer {msec): 16 ~ Cancel IF Power OFf O
Event On Surprise Removal |:|
Timeouks Set RTS On Close |:|
.) Disable Modem Ctrl At Startup i
Pt] W= el Enable Selective Suspend O
Mirirnurn Write Timeout (msec): Selective Suspend Idle Timeout (secs):

Figure 55 — COM Port Advanced Settings (FTDI)

75

Type 2 Simulator — Technical Reference Guide 1.8

7. It may be necessary to unplug the USB-to-Serial adapter, then plug it back before the
adapter is correctly identified and initialised with the new COM port number.

E: Device Manager E[E

File Action ‘iew Help

& =
3 Computer
wge Disk drives

§ Display adapters

i DVDJCD-ROM drives

{28 Human Interface Devices

+ IDE ATASATAFI controllers
+-e Keyboards

+-1 ") Mice and other pointing devices
+-- B8 Netwark adapters

= 5 Ports (COM & LPT)

Printer Port (1PT1Y

I & Prolfic USB-to-Serial Comm Port (COM3) I
+] o 20und, Yided and Jdane Contrallers

+ i System devices
+ Universal Serial Bus controllers

[

Figure 56 — Device Manager (Reconfigured Port COM3)

76

Type 2 Simulator — Technical Reference Guide 1.8

Interconnecting Type 1 & Type 2 Simulators

Compatibility

Type 1 and Type 2 sensors and Simulator Interfaces are electrically compatible, both using +5V
power supplies and active-low outputs, but the two generations of the simulator use different
connectors, cabling, and wiring conventions.

Some installations may have a requirement to interconnect Type 1 and Type 2 hardware, for
example to expand an existing Type 1 installation with additional Type 2 sensors. A simple adapter
has been designed for this purpose.

Type 1 - Type 2 Interface Adapter

The Type 1 — Type 2 Interface Adapter is designed to allow Type 2 sensors (using RJ45 connectors) to
connect to a Type 1 Simulator Interface (using GX16-4 connectors). The adapter allows up to four
Type 2 sensors, connected in a single chain, to connect to a Type 1 interface.*

An example of a completed Interface Adapter and cable is shown in the following photograph, in this
case wired to support connecting two Type 2 sensors to a Type 1 interface. The Type 1 interface
sensor connectors may need to be modified with additional link wires to support multiple sensors;
this is described in detail below.

Figure 57 - Type 1 - Type 2 Adapter

4 The adapter may also be used to connect Type 1 sensors to a Type 2 interface, although this is not
described in this guide.

77

Type 2 Simulator — Technical Reference Guide 1.8

The connection and cabling requirements for the adapter are summarised in the following table:

Table 5 - Type 1 - Type 2 Interface Adapter Requirements

Number of Type 2
Sensors Connected

Number of Adapter
Cables Required

Number of Type 1
Sensor Connectors

Type 1 Interface Link
Wires Required?

1 1 1 No

2 1 1 (plus 1 unused) Yes-1
3 2 2 (plus 1 unused) Yes-1
4 2 2 (plus 2 unused) Yes -2

The construction of the adapter cables and the configuration of link wires in the Type 1 Simulator

Interface are described below.

78

Type 2 Simulator — Technical Reference Guide 1.8

Schematic
T | 2 T 3 [5 | 6
A A
B JP3 B
15V RJ45-RJHSE-X08090DEG
2 GmD
Sensors 3 & 4 3 SENSOR3 4
& sensor_s 3 X Org
3 —W/Gmn
;X B
6 —Grn
H JP2 { TX38m N
15V
2 GND
Sensors 1 & 2 3 SENSOR_L Pl
4 SENSOR_2
o C
Liverpool Ringing Simulator Project
Sheet: /
o File: SimulatorTiT2AdapterRevC.kicad_sch b
Title: Liverpool Simulator Type 1 — Type 2 Adapter
This design is released under the Creative Commons Attribution—ShareAlike 4.0 International License (CC BY-SA) Size: A4 | Date: 2025-04-24 [Rew: C
KiCad E.D.A. 9.0.1 [Id: 1/1
1 | 2 I 3 I [| g T 6

79

Type 2 Simulator — Technical Reference Guide 1.8

Interface Adapter PCB

Eagle CAD files and manufacturing Gerber files for the Interface Adapter PCB are available in the
Type 2 GitHub repository. The Interface Adapter PCB is the same size as a Type 2 sensor PCB and will
fit in the same size 0.07 Litre Really Useful Box®.

The following diagram shows the layout of the Type 1 — Type 2 Interface Adapter PCB. All
components are mounted on the top (silkscreen) side of the board.

5v ov S1 S2 5V ov S3 Sh

— Li | Simulator T 2
@EENE) v cimuistors.orgk (@Xe)XeXe)

30.4800 mm

TYPE 1 INTERFACE] —— TYPE 1 INTERFACE
SENSORS 1 & 2 TYPE 2 INTERFACE] SENSORS 3 & 4
CHANNELS 1-4

Rev C Type 1 — Type 2
03/2025 Interface Adapter

k 48.2600 mm :}‘

Figure 58 - Type 1 - Type 2 Adapter Board Layout

An example of a completed Interface Adapter is shown in the following photograph. As shown, this
adapter would support the connection of up to two Type 2 sensors to a Type 1 Simulator Interface.
An additional 4-way connector would need to be installed on the board to support a further two

Type 2 sensors.

Figure 59 - Type 1 - Type 2 Adapter PCB

80

Parts List

Type 2 Simulator — Technical Reference Guide 1.8

Table 6 — Type 1 — Type 2 Interface Adapter Parts List

Reference | Component Notes

PCB Type 1 — Type 2 Interface Adapter PCB

JP1 Amphenol RJIHSE-5080°° Farnell 1860577
JP2,JP2 4-Way Molex KK 254 Connector Farnell 1756798

(Molex 22-05-3041 Series 7478 PCB Header)
Farnell 1462809

(Molex 22-01-2047 Series 2695 Receptacle)
Farnell 2063734

(Molex 08-50-0113 Series 2759 Terminal)

Interface Adapter Cabling
The wiring of the Interface Adapter cables is shown in the following diagram. One cable can support

up to two Type 2 sensors, two cables are required to support up to four Type 2 sensors.

Adapter Board
Type 1 Connector

2, 1..

] 5v
] ov
| |STorS3
\ 3. 4.] S2or34

Type 1 - Type 2 Adapter Cable
(GX16-4, Line Socket, Solder Side to 4-Pin PCB Header Socket)

Figure 60 - Type 1 - Type 2 Adapter Cable

50 As used on the Power Module PCB

81

Type 2 Simulator — Technical Reference Guide 1.8

Type 1 Interface Wiring Modification

To support more than one Type 2 sensor connected via the Interface Adapter, the Type 1 interface
must be wired to support two sensors per GX16-4 connector. This approach is mentioned in the
Type 1 Simulator Sensors Hardware Manual to support Type 1 sensor heads with two sensors.

An example of the required modification is illustrated in the following diagram. In this example, the
Interface Adapter cable is connected to the top connector, Connector 1, and Connector 2 would be

unused. An additional link wire is fitted between pin 4 of Connector 1 and pin 3 of Connector 2, to
route the signal from the second sensor to the channel 2 of the interface.

Input ov
~
* 3 2 X S 4
e e -
1 1 8 c
H _.i |! L.!'E %
' .4 1.;“— =
r —
§ Input 2 +5V DC
::
E Input oV
\ e / /
Aos))/ S ~
2 i 8E
‘ ®: @/, £5
Thpat 2 +5V DC
Sensor Input Connectors
(GX16-4, Chassis Plugs, Pin Side)

Figure 61 - Type 1 Interface Connector Wiring Modification

82

Type 2 Simulator — Technical Reference Guide 1.8

Appendices

Appendix A: MBI Protocol Description

Note that although the Type 2 Liverpool Ringing Simulator uses the basic MBI serial protocol
described below, it does not upload or store the delay timers in the Simulator Interface Module, and
those parts of the protocol are not implemented. Delays are instead applied by the Simulator
Software Package on the Simulator PC. This allows the simulator to support more than 12 sensors
and allows more flexibility, for example in the simulation of raising and lowering.

The following description of the MBI Protocol is derived from information supplied by David Bagley
and Chris Hughes.

The MBI aggregates signals from a number of sensors, one per bell, into a stream of ASCII characters
sent over a RS-232 serial data link to the Simulator. This link operates at 2400 bps, 8 data bits, 1 stop
bit, no parity.

Within the MBI, each bell has a delay timer value configured which corresponds to the time between
the bell passing through the bottom dead centre of its swing, and the time the clapper would
normally strike the bell. These delay values are uploaded by the Simulator PC and stored by the MBI
in non-volatile memory.

When a signal from a Sensor Head is detected, the MBI applies the delay timer (appropriate to that
bell), and at the expiry of that timer the MBI sends the corresponding single ASCII character to the
Simulator, which then produces the simulated sound of that bell. The characters are defined using
the usual change ringing convention of “0”, "E” & “T” for bells 10, 11 & 12. At present a maximum of
12 bells are supported by the protocol.

The MBI Protocol also includes provision for connecting up to 4 external command switches, for
which the characters sent are “W”, “X”, “Y” & “Z”. This behaviour is not currently supported by
Bagley MBI interface hardware, but Abel has support for the protocol functionality.

The MBI also receives serial input from the Simulator. The command set defined by the protocol is
described in Appendix B. Not all features of the command set are used by all Simulator applications.

83

Type 2 Simulator — Technical Reference Guide 1.8

Appendix B: MBI Protocol Commands
The following table lists the commands defined in the MBI Protocol.

Table 7 — MBI Protocol Commands

Command Function

OxFD The 0xFD command is used to detect the presence of a Simulator
Interface. The expected response is for the Interface to return one byte,
hexadecimal value OxFD.

e This command is used by the tested version of Abel from version
10.3.2.

e This command does not appear to be used by tested versions of
either Beltower or Virtual Belfry.

e This command is supported by the Type 2 Liverpool Ringing
Simulator firmware from version 3.7 onwards.

OxFE The OxFE command is used to retrieve the current timer delay versions
from the Simulator Interface. The expected response is for the Interface
to return 13 bytes, one byte for each bell in the order 1 to 12, containing
the current delay value in centiseconds expressed as a hexadecimal
value, and a trailing termination byte, hexadecimal value OxFF.

e This command is used by the tested version of Beltower when
operating in MBI mode.
e This command does not appear to be used by the tested
versions of Abel or Virtual Belfry.
e This command is not used or supported by the Type 2 Liverpool
Ringing Simulator firmware.
OxNN ... OxFF Timer delay data is sent to the Simulator Interface by the Simulator

Software Package as a series of 13 bytes, one byte for each bell in the
order 1 to 12, containing the new delay value in centiseconds expressed
as a hexadecimal value, and a trailing termination byte, hexadecimal
value OxFF. All 12 values are always sent, even if fewer than 12 bells are
configured. In this case the data is padded with 0x00 bytes.

e This command is used by tested versions of Abel, Beltower and
Virtual Belfry when operating in MBI mode.

e This command is not used or supported by the Type 2 Liverpool
Ringing Simulator firmware.

84

Type 2 Simulator — Technical Reference Guide 1.8

Appendix C: Metrics Tables

Inter-Blow & Inter-Row Interval

This appendix contains a more detailed analysis of the inter-blow and inter-row intervals for a large
sample of rings of bells. A total of 4096 records of peals and quarter peals were downloaded from
the Ringing World Bell Board database using the experimental XML API.

This data was then sanitised to remove all hand bell performances, any performances for which the
duration or number of changes was not specified, and to convert the duration to consistent units.
This left a total of 3080 performances comprising 54.7 Million blows for analysis.

The following table shows the results of this analysis:

Table 8 — Inter-Blow & Inter-Row Intervals

Bells®® | Total Total Blows | Inter-Row Inter-Blow
Performances Interval (s) Interval (ms)
12 111 4452144 2.93 244 Max
1.96 164 Min
241 200 Mean
10 265 8554130 2.84 284 Max
1.67 167 Min
2.22 222 Mean
8 1203 25199176 2.69 336 Max
1.25 157 Min
2.10 262 Mean
7 9 81396 2.26 323 Max
2.05 292 Min
2.18 312 Mean
6 1341 15074688 2.68 447 Max
1.06 177 Min
2.01 334 Mean
5 116 1168285 3.00 600 Max
1.12 224 Min
1.99 398 Mean
4 23 149088 2.26 566 Max
1.57 393 Min
1.88 471 Mean
3 12 45432 2.10 698 Max
1.67 556 Min
1.95 651 Mean
All 3080 54724339 3.00 698 Max
1.06 157 Min

51 Including the cover bell, if any.

85

Type 2 Simulator — Technical Reference Guide 1.8

Sensor Pulse Duration

The following table shows the small pendulum period, wheel radius, estimated wheel rim speed and
theoretical pulse duration for each bell at Liverpool Cathedral, based on a reflector tape 25mm wide;
and the observed pulse duration measured during development by the Simulator Interface firmware
in debug mode, using infra-red detectors.

The wheel rim speed is calculated as 4nR/T, where R is the radius of the wheel, and T is the
pendulum period of the bell for small oscillations.

Table 9 — Sensor Pulse Durations — Liverpool Cathedral

Bell Period T (s) | Wheel Estimated Wheel | Theoretical Observed Pulse
Radius R (m) | Rim Speed (m/s) | Pulse Duration
Duration (ms) | (Range) (ms)
1 1.60 0.81 6.38 3.9 5.7 (5.6-6.2)
2 1.60 0.84 6.58 3.8 6.2 (6.1-6.3)
3 1.60 0.86 6.78 3.7 6.0 (5.9-6.1)
4 1.70 0.86 6.38 3.9 6.2 (6.0-6.3)
5 1.75 0.89 6.38 3.9 6.4 (6.3-7.2)
6 1.80 0.89 6.21 4.0 5.9 (5.7-6.2)
7 2.00 0.99 6.22 4.0 6.3 (5.8-6.4)
8 2.05 1.07 6.54 3.8 7.7(7.5-7.8)
9 2.25 1.14 6.38 3.9 6.6 (6.4 - 6.7)
10 2.40 1.22 6.38 3.9 6.5 (6.1-6.7)
11 2.40 1.32 6.92 3.6 6.7 (6.5-6.9)
12 2.60 1.50 7.24 3.5 6.1 (6.0-6.3)

The effect of the “overlap” effect described in the main text on the observed pulse durations is
evident when the theoretical and observed duration figures are compared.

Similar measurements of period and wheel radius have been made on a number of other smaller
bells, and these yield similar results. This suggests that, in this regard at least, the Cathedral bells are
unexceptional, and the sensing approach adopted may be re-used elsewhere. The following table
shows the results of these investigations. No simulators are currently fitted to these bells and no
actual pulse duration measurements have been made.

Table 10 — Theoretical Sensor Pulse Durations — Other Towers

Bell Period T (s) Wheel Radius R Estimated Wheel | Theoretical Pulse
(m) Rim Speed (m/s) | Duration (ms)

St John the Baptist, Tuebrook

1 1.60 0.80 6.28 4.0

5 1.70 0.88 6.47 3.9

8 2.00 0.98 6.16 4.1

St Helen, Sefton

1 1.50 0.71 5.95 4.2

4 1.60 0.77 6.01 4.2

7 1.80 0.87 6.04 4.1

86

Type 2 Simulator — Technical Reference Guide 1.8

BDC-to-Strike Intervals

The following chart shows the average time differences obtained during development between the
triggering of an infra-red optical Sensor Module and a sound operated sensor for each bell at
Liverpool Cathedral. Separate average values are shown for handstroke, backstroke, and both
strokes combined. The total sample size was 93 blows.

BDC-to-Strike Intervals - Average
750

700

650

D
o
o

mSec (average)
w
3
._

w
(=)
o

2
N

450 —
Backstroke

* b * B Handstroke
I Both Strokes

Linear (Both Strokes)
350 f f f
1 2 3 4 5 6 7 8 9 10 11 12

Figure 62 — Liverpool Cathedral Odd-Struckness Chart

87

Type 2 Simulator — Technical Reference Guide 1.8

Appendix D: CLI Command Reference
The following table lists the additional CLI commands supported by the Type 2 Simulator Interface

firmware, and their functions, as of version 3.8.

Table 11 - CLI Command Reference

Command Function

? Display current settings
This command sends a detailed set of configuration and operational values to the
serial port for review.

B/b Set the de-bounce timer (1ms -> 20ms, default 2ms).

This command prompts for the value of the de-bounce time, in milliseconds. See
also command “S”.

G/g Set the guard timer (1cs -> 50cs, default 10cs).

This command prompts for the value of the guard time, in centiseconds (1cs =
10ms). See also command “S”.

E/e Enable/disable sensors.

This command prompts for the enable mask bit to be set or unset for each input
channel. This determines which channels will generate output, and can be used
for example to bypass a faulty Sensor Module. See also command “S”.

R/r Remaps Sensor Module channel numbers (1 to 16) to Simulator output signals,
following the usual conventions for bell numbers (0-90ETABCD). Can also be used
to map channels to the MBI external switch codes (WXYZ), supported by Abel
only.

S/s Save settings to EEPROM.

This command saves the value set by the “B”, “G”, “E” and “R” commands to non-
volatile memory. If Debug Mode is enabled, the Debug Mask (“M”) is also saved.

P/p Set the serial port speed.

The serial port speed may be set to 2400, 4800 or 9600bps with this command.
The new speed is stored in EEPROM immediately and an interface reset is
required to make it active. This command is provided for debugging use only, all
tested Simulator Software packages support 2400bps only.

T/t Enable test mode.

Generates several useful test patterns on the serial interface. A hardware reset is
required to exit test mode.

H/h Display CLI help text.

D Turn debug mode ON, or set debug flags.
If Debug Mode is off, this command turns it on.
If Debug Mode is on, this command prompts the user to enable or disable each
Debug Flag.
This output is intended to be accessed via a terminal emulator and is not suitable
for use by the Simulator. Debug mode should be disabled before starting the
Simulator Software Package.

d Turn debug mode OFF

The following commands are available in Debug Mode only.

88

Type 2 Simulator — Technical Reference Guide 1.8

M/m

Set or unset the debug mask bits. (Debug Mode only)

This command is available only when Debug Mode is turned on, and prompts for
the debug mask bit to be set or unset for each input channel. This determines
which channels will generate debug output and can be used to reduce the volume
of debug messages when troubleshooting a specific channel or Sensor Module.
See also command “S”.

Z/z

Set defaults. (Debug Mode only)
This command is available only when Debug Mode is turned on, and sets default
values for all the configurable settings. See also command “S”.

Print debug markers (Debug Mode only)

This command is available only when Debug Mode is turned on, and sends the
text “DEBUG MARKER N” to the serial port, where N =0 to 9. This is useful for
identifying areas of interest in the output when logging debug output with a
terminal emulator.

L/1

Display CLI debug mode help text (Debug Mode only)

89

Type 2 Simulator — Technical Reference Guide 1.8

Appendix E: Diagnostic LED Codes
The following tables list the meanings of the codes shown by the flashes of the diagnostic LED on the
Simulator Interface Module. This list is correct as of firmware v3.8.

e The LED flashes slowly when test mode is running.
The following table lists the signal codes displayed on the yellow LED of the Simulator Interface.

Table 12 - LED Signal Codes

Long Short | Meaning CLI Command
N M Announces the firmware version on power-on. -
1 0 The LED gives one long flash every time the Sensor Module -

connected to Channel 1 is triggered. The LED lights when the
signal from the Sensor Module is received, and extinguishes
when the corresponding guard timer expires (the length of this
flash is therefore equal to the setting of the guard timer).

The Debug Show LED debug flag enables this behaviour for all

channels for which debugging has been selected.

On Steady On after power-on: Port speed is not 2400bps, or a sensor -
channel is disabled (Debug mode only).

CLI key press acknowledgement. -

MBI Protocol command OxFD received (OxFD response is sent).

MBI Protocol command OxFE received (no response is sent).

MBI Protocol delay timers (and terminator byte) received.

De-bounce timer set.

Guard timer set.

Settings saved to EEPROM.

Enabled channels set.

Serial port speed set in EEPROM.

Debug mode on.

Ol N LB WIW|INIFRP]PFP

Debug mode off.

[ER
o

Debug mask set.

D|z|e|o|Oomu o ®

[Eny
=

Channels remapped.

WINININININININNNIPRP[RR]O

o

Invalid character or timeout on serial interface, data discarded.

90

Type 2 Simulator — Technical Reference Guide 1.8

Appendix F: Useful Links
Table 13 — Useful Links

Description Link

Software

GitHub Software Repository https://github.com/Simulators

Abel Simulator Software https://www.abelsim.co.uk

Beltower Simulator Software https://www.beltower.co.uk

Virtual Belfry Simulator Software https://www.belfryware.com

Hardware

JLCPCB PCBs https://jlcpcb.com

Seeed PCBs https://www.seeedstudio.com

OSH Park PCBs https://oshpark.com

David Bagley MBI, Sensors http://www.bagleybells.co.uk

Microchip Microcontrollers (formerly Atmel) https://www.microchip.com

Maxim Serial Line Drivers https://www.analog.com

Information

John Norris “When does a bell strike?” https://www.jrnorris.co.uk/strike.html
Frank King Equations of Motion of a Free Bell and Clapper https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf
Tools

Arduino Electronic Prototyping https://arduino.cc

PuTTY Free Terminal Emulator https://www.chiark.greenend.org.uk/~sgtatham/putty/
FTDI USB-Serial Adapter Drivers https://ftdichip.com/drivers/vcp-drivers/
Prolific USB-Serial Adapter Drivers https://www.prolific.com.tw/US/index.aspx
Audacity Sound Editing Package https://www.audacityteam.org

91

https://github.com/Simulators
https://www.abelsim.co.uk/
https://www.beltower.co.uk/
https://www.belfryware.com/
https://jlcpcb.com/
https://www.seeedstudio.com/
https://oshpark.com/
http://www.bagleybells.co.uk/
https://www.microchip.com/
https://www.analog.com/
https://www.jrnorris.co.uk/strike.html
https://www.cl.cam.ac.uk/~fhk1/Bells/equations.pdf
https://arduino.cc/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://ftdichip.com/drivers/vcp-drivers/
https://www.prolific.com.tw/US/index.aspx
https://www.audacityteam.org/

Type 2 Simulator — Technical Reference Guide 1.8

Appendix G: A Quarter Peal of Cambridge Surprise Minor

The following chart was constructed from debug output generated by a prototype Simulator Interface during development of the Liverpool Cathedral
Simulator, and shows the relative time between blows of a sensor on the 3, which was being rung as the treble to a quarter peal of Cambridge Surprise
Minor of the light (24cwt) six. This output showed that triggering and detection of the Sensor Module was reliable, with no missed signals (which would
have been indicated as very high values) or spurious triggers (very low values).

Bell 3 DeltaT
3500

3000 T

I
. LA

b
i =———_.
- —

2000 |l il u'l—“'J‘; ‘

|
i & | i AT m-&‘| Wl
| Y] gl
&
£
1500
1000
500
~— DeltaT
0
ﬂﬂﬂﬂﬂ NANANANNMOOMOOMOS TSSO NNNNDOOOWOORNNNNRNRNGOGIONOWNWOMWOOOND N S EH E A A A ANNANNNOM
DataPOInt R e e e B B I I R I]

Figure 63 — Quarter Peal Sensor Head Test Timings

92

Type 2 Simulator — Technical Reference Guide 1.8

Licensing & Disclaimers

Documentation

All original manuals and other documentation (including PCB layout CAD files and schematics)
released as part of the Liverpool Ringing Simulator project® are released under the Creative
Commons Attribution-ShareAlike 4.0 International License (CC BY-SA),>® which includes the following
disclaimers:

Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or
warranties of any kind concerning the Licensed Material, whether express, implied, statutory,
or other. This includes, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non-infringement, absence of latent or other defects, accuracy, or the
presence or absence of errors, whether or not known or discoverable. Where disclaimers of
warranties are not allowed in full or in part, this disclaimer may not apply to You.

To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect,
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages
arising out of this Public License or use of the Licensed Material, even if the Licensor has been
advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of
liability is not allowed in full or in part, this limitation may not apply to You.

Software
All original software released as part of the Liverpool Ringing Simulator project is released under the
GNU General Public Licence (GPL), Version 3°%, and carries the following disclaimers:

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

52 https://www.simulators.org.uk
53 https://creativecommons.org/licenses/by-sa/4.0/
54 https://www.gnu.org/licenses/gpl-3.0.en.html

93

https://www.simulators.org.uk/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/gpl-3.0.en.html

Type 2 Simulator — Technical Reference Guide 1.8

Acknowledgements

The Liverpool Ringing Simulator project relies extensively on work already undertaken by others,
notably David Bagley (developer of the Bagley MBI), Chris Hughes and Simon Feather (developers of
the Abel simulator software package), Derek Ballard (developer of the Beltower simulator software
package), Doug Nichols (developer of the Virtual Belfry simulator software package), and others.
Their invaluable contributions are hereby acknowledged. Sources used are referenced in the
footnotes throughout.

Assistance with aspects of the Basic Serial Splitter Module design provided the technical support
engineers at Analog Devices (formerly Maxim Integrated, Inc).

Thanks are also owed to the Ringing Masters and ringers of the following towers for their willingness
to be the crash test dummies of simulator design and testing.

e Liverpool Cathedral

e St George’s, Isle of Man

e St Mary, Chirk, Wrexham

e St John, Higham, Kent

e St Margaret, Crick, Northamptonshire

e St Mary & St Peter, Lois Weedon, Northamptonshire

94

